Immunogenicity and protective efficacy of an inactivated bivalent vaccine containing two recombinant H1N1 and H3N2 swine influenza virus strains

Paules CI, Sullivan SG, Subbarao K, Fauci AS (2018) Chasing seasonal influenza - The need for a universal influenza vaccine. N Engl J Med 378(1):7–9. https://doi.org/10.1056/NEJMp1714916

Article  Google Scholar 

Pizzolla A, Nguyen TH, Sant S, Jaffar J, Loudovaris T, Mannering SI, Thomas PG, Westall GP, Kedzierska K, Wakim LM (2018) Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J Clin Investig 128(2):721–733. https://doi.org/10.1172/JCI96957

Article  PubMed Central  Google Scholar 

Zens KD, Chen JK, Farber DL (2016) Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 1(10):e85832. https://doi.org/10.1172/jci.insight.85832

Article  PubMed Central  Google Scholar 

Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W, Carman W, Bean T, Barclay W, Deeks JJ, Lalvani A (2013) Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med 19(10):1305–1312. https://doi.org/10.1038/nm.3350

Article  CAS  Google Scholar 

Osbjer K, Berg M, Sokerya S, Chheng K, San S, Davun H, Magnusson U, Olsen B, Zohari S (2017) Influenza A virus in backyard pigs and poultry in rural Cambodia. Transbound Emerg Dis 64(5):1557–1568. https://doi.org/10.1111/tbed.12547

Article  CAS  Google Scholar 

Weinfurter JT, Brunner K, Capuano SV 3rd, Li C, Broman KW, Kawaoka Y, Friedrich TC (2011) Cross-reactive T cells are involved in rapid clearance of 2009 pandemic H1N1 influenza virus in nonhuman primates. PLoS Pathog 7(11):e1002381. https://doi.org/10.1371/journal.ppat.1002381

Article  CAS  PubMed Central  Google Scholar 

Koutsakos M, Illing PT, Nguyen THO, Mifsud NA, Crawford JC, Rizzetto S, Eltahla AA, Clemens EB, Sant S, Chua BY, Wong CY, Allen EK, Teng D, Dash P, Boyd DF, Grzelak L, Zeng W, Hurt AC, Barr I, Rockman S, Kedzierska K (2019) Human CD8 + T cell cross-reactivity across influenza A, B and C viruses. Nat Immunol 20(5):613–625. https://doi.org/10.1038/s41590-019-0320-6

Article  CAS  Google Scholar 

Si L, Xu H, Zhou X, Zhang Z, Tian Z, Wang Y, Wu Y, Zhang B, Niu Z, Zhang C, Fu G, Xiao S, Xia Q, Zhang L, Zhou D (2016) Generation of influenza A viruses as live but replication-incompetent virus vaccines. Sci (New York N Y) 354(6316):1170–1173. https://doi.org/10.1126/science.aah5869

Article  CAS  Google Scholar 

Wang L, Liu SY, Chen HW, Xu J, Chapon M, Zhang T, Zhou F, Wang YE, Quanquin N, Wang G, Tian X, He Z, Liu L, Yu W, Sanchez DJ, Liang Y, Jiang T, Modlin R, Bloom BR, Li Q, Cheng G (2017) Generation of a live attenuated influenza vaccine that elicits broad protection in mice and ferrets. Cell Host Microbe 21(3):334–343. https://doi.org/10.1016/j.chom.2017.02.007

Article  CAS  Google Scholar 

Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JS, Guan Y, Rambaut A (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459(7250):1122–1125. https://doi.org/10.1038/nature08182

Article  CAS  Google Scholar 

Zhao X, Shen M, Cui L, Liu C, Yu J, Wang G, Erdeljan M, Wang K, Chen S, Wang Z (2024) Evolutionary analysis of hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China. Sci Rep 14(1):28792. https://doi.org/10.1038/s41598-024-80457-4

Article  CAS  PubMed Central  Google Scholar 

Song Zuchen M, Fei Z, Dandan W, Feifei L, Yaru C, Chuanling YQ, Hualan C, Yang Huanliang (2021) Development and identification of high-replicated swine influenza virus GX1659/PR8 reassortant virus. Chin J Prev Veterinary Med 43(10):1103–1107 (in Chinese)

Google Scholar 

Wang Z, Yang H, Chen Y, Tao S, Liu L, Kong H, Ma S, Meng F, Suzuki Y, Qiao C, Chen H (2017) A Single-Amino-Acid substitution at position 225 in hemagglutinin alters the transmissibility of Eurasian Avian-Like H1N1 swine influenza virus in Guinea pigs. J Virol 91(21):e00800–e00817. https://doi.org/10.1128/JVI.00800-17

Article  CAS  PubMed Central  Google Scholar 

Sui J, Yang D, Qiao C, Xu H, Xu B, Wu Y, Yang H, Chen Y, Chen H (2016) Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice. Vaccine 34(33):3757–3763. https://doi.org/10.1016/j.vaccine.2016.06.009

Article  CAS  Google Scholar 

Ruan BY, Yao Y, Wang SY, Gong XQ, Liu XM, Wang Q, Yu LX, Zhu SQ, Wang J, Shan TL, Zhou YJ, Tong W, Zheng H, Li GX, Gao F, Kong N, Yu H, Tong GZ (2020) Protective efficacy of a bivalent inactivated reassortant H1N1 influenza virus vaccine against European avian-like and classical swine influenza H1N1 viruses in mice. Vet Microbiol 246:108724. https://doi.org/10.1016/j.vetmic.2020.108724

Article  CAS  Google Scholar 

PIZZI M (1950) Sampling variation of the 50% end-point, determined by the Reed-Muench (Behrens) method. Hum Biol 22(3):151–190

Google Scholar 

Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, Hopfner KP, Ludwig J, Hornung V (2013) cGAS produces a 2’-5’-linked Cyclic dinucleotide second messenger that activates STING. Nature 498(7454):380–384. https://doi.org/10.1038/nature12306

Article  CAS  PubMed Central  Google Scholar 

Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Sci (New York N Y) 339(6121):826–830. https://doi.org/10.1126/science.1229963

Article  CAS  Google Scholar 

Wang J, Li P, Wu MX (2016) Natural STING agonist as an ideal adjuvant for cutaneous vaccination. J Invest Dermatol 136(11):2183–2191. https://doi.org/10.1016/j.jid.2016.05.105

Article  CAS  PubMed Central  Google Scholar 

Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, Woo SR, Lemmens E, Banda T, Leong JJ, Metchette K, Dubensky TW, Jr, Gajewski TF (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11(7):1018–1030. https://doi.org/10.1016/j.celrep.2015.04.031

Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K (2005) Molecular basis of replication of Duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79(18):12058–12064. https://doi.org/10.1128/JVI.79.18.12058-12064.2005

Article  CAS  PubMed Central  Google Scholar 

Li IW, Chan KH, To KW, Wong SS, Ho PL, Lau SK, Woo PC, Tsoi HW, Chan JF, Cheng VC, Zheng BJ, Chen H, Yuen KY (2009) Differential susceptibility of different cell lines to swine-origin influenza A H1N1, seasonal human influenza A H1N1, and avian influenza A H5N1 viruses. J Clin Virology: Official Publication Pan Am Soc Clin Virol 46(4):325–330. https://doi.org/10.1016/j.jcv.2009.09.013

Article  CAS  Google Scholar 

Zhou B, Donnelly ME, Scholes DT, George S, Hatta K, Kawaoka M, Y., Wentworth DE (2009) Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and swine origin human influenza a viruses. J Virol 83(19):10309–10313. https://doi.org/10.1128/JVI.01109-09

Article  CAS  PubMed Central  Google Scholar 

Wang J, Li B, Wu MX (2015) Effective and lesion-free cutaneous influenza vaccination. Proc Natl Acad Sci USA 112(16):5005–5010. https://doi.org/10.1073/pnas.1500408112

Article  CAS  PubMed Central  Google Scholar 

Wang J, Shah D, Chen X, Anderson RR, Wu MX (2014) A micro-sterile inflammation array as an adjuvant for influenza vaccines. Nat Commun 5:4447. https://doi.org/10.1038/ncomms5447

Article  CAS  Google Scholar 

Xing J, Weng L, Yuan B, Wang Z, Jia L, Jin R, Lu H, Li XC, Liu YJ, Zhang Z (2016) Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract. Nat Immunol 17(12):1373–1380. https://doi.org/10.1038/ni.3580

Article  CAS  PubMed Central  Google Scholar 

Wang J, Lu W, Zhang J, Du Y, Fang M, Zhang A, Sungcad G, Chon S, Xing J (2024) Loss of TRIM29 mitigates viral myocarditis by attenuating PERK-driven ER stress response in male mice. Nat Commun 15(1):3481. https://doi.org/10.1038/s41467-024-44745-x

Article  CAS  PubMed Central  Google Scholar 

Xing J, Zhang A, Du Y, Fang M, Minze LJ, Liu YJ, Li XC, Zhang Z (2021) Identification of poly(ADP-ribose) polymerase 9 (PARP9) as a noncanonical sensor for RNA virus in dendritic cells. Nat Commun 12(1):2681. https://doi.org/10.1038/s41467-021-23003-4

Article  CAS  PubMed Central  Google Scholar 

Comments (0)

No login
gif