Factors Influencing the Efficacy and Safety of Monoclonal Antibody Biologics in Chronic Obstructive Pulmonary Disease: A Meta-analysis of Randomized Controlled Trials

GLOBAL INITIATIVE FOR CHRONIC OBSTRUCTIVE LUNG DISEASE.GLOBAL STRATEGY FOR PREVENTION, DIAGNOSIS AND MANAGEMENT OF COPD: 2025 Report.https://goldcopd.org/2025-gold-report/.Published2024. Accessed 25 Nov 2024.

Safiri S, Carson-Chahhoud K, Noori M, Nejadghaderi SA, Sullman M, Ahmadian HJ et al (2022) Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990–2019: results from the global burden of disease study 2019. BMJ-Brit Med J 378:e69679

Google Scholar 

MacLeod M, Papi A, Contoli M, Beghé B, Celli BR, Wedzicha JA et al (2021) Chronic obstructive pulmonary disease exacerbation fundamentals: diagnosis, treatment, prevention and disease impact. Respirology 26:532–551

Article  PubMed  Google Scholar 

Criner GJ, Celli BR, Brightling CE, Agusti A, Papi A, Singh D et al (2019) Benralizumab for the prevention of COPD exacerbations. New Engl J Med 381:1023–1034

Article  CAS  PubMed  Google Scholar 

Bhatt SP, Rabe KF, Hanania NA, Vogelmeier CF, Bafadhel M, Christenson SA et al (2024) Dupilumab for COPD with blood eosinophil evidence of type 2 inflammation. New Engl J Med 390:2274–2283

Article  CAS  PubMed  Google Scholar 

Bhatt SP, Rabe KF, Hanania NA, Vogelmeier CF, Cole J, Bafadhel M et al (2023) Dupilumab for COPD with type 2 inflammation indicated by eosinophil counts. New Engl J Med 389:205–214

Article  CAS  PubMed  Google Scholar 

Rabe KF, Celli BR, Wechsler ME, Abdulai RM, Luo X, Boomsma MM et al (2021) Safety and efficacy of itepekimab in patients with moderate-to-severe COPD: a genetic association study and randomised, double-blind, phase 2a trial. Lancet Resp Med 9:1288–1298

Article  CAS  Google Scholar 

Yousuf AJ, Mohammed S, Carr L, Yavari RM, Micieli C, Mistry V et al (2022) Astegolimab, an anti-ST2, in chronic obstructive pulmonary disease (COPD-ST2OP): a phase 2a, placebo-controlled trial. Lancet Resp Med 10:469–477

Article  CAS  Google Scholar 

Lommatzsch M, Brusselle GG, Levy ML, Canonica GW, Pavord ID, Schatz M et al (2023) A(2)BCD: a concise guide for asthma management. Lancet Resp Med 11:573–576

Article  CAS  Google Scholar 

Barnes PJ (2021) Endo-phenotyping of COPD patients. Expert Rev Resp Med 15:27–37

Article  CAS  Google Scholar 

Polverino F, Sin DD (2024) Type 2 airway inflammation in COPD. Eur Respir J. 63.

Adibi A, Sin DD, Safari A, Johnson KM, Aaron SD, FitzGerald JM et al (2020) The acute COPD exacerbation prediction tool (ACCEPT): a modelling study. Lancet Resp Med 8:1013–1021

Article  Google Scholar 

Safari A, Adibi A, Sin DD, Lee TY, Ho JK, Sadatsafavi M (2022) ACCEPT 2·0: recalibrating and externally validating the acute COPD exacerbation prediction tool (ACCEPT). Eclinicalmedicine 51:101574

Article  PubMed  PubMed Central  Google Scholar 

Sterne J, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ-Brit Med J 366:l4898

Article  Google Scholar 

Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ-Brit Med J 327:557–560

Article  Google Scholar 

Brightling CE, Bleecker ER, Panettieri RJ, Bafadhel M, She D, Ward CK et al (2014) Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Resp Med 2:891–901

Article  CAS  Google Scholar 

Pavord ID, Chanez P, Criner GJ, Kerstjens H, Korn S, Lugogo N et al (2017) Mepolizumab for eosinophilic chronic obstructive pulmonary disease. New Engl J Med 377:1613–1629

Article  CAS  PubMed  Google Scholar 

Dasgupta A, Kjarsgaard M, Capaldi D, Radford K, Aleman F, Boylan C, et al. (2017) A pilot randomised clinical trial of? Mepolizumab in COPD with eosinophilic bronchitis. Eur Respir J. 49.

Rennard SI, Fogarty C, Kelsen S, Long W, Ramsdell J, Allison J et al (2007) The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Resp Crit Care 175:926–934

Article  CAS  Google Scholar 

Calverley P, Sethi S, Dawson M, Ward CK, Finch DK, Penney M et al (2017) A randomised, placebo-controlled trial of anti-interleukin-1 receptor 1 monoclonal antibody MEDI8968 in chronic obstructive pulmonary disease. Resp Res 18:153

Article  Google Scholar 

Safety and Efficacy of Multiple Doses of Canakinumab (ACZ885) in Chronic Obstructive Pulmonary Disease (COPD) Patients.https://clinicaltrials.gov/study/NCT00581945?cond=COPD&intr=ACZ885&rank=1&tab=results. Accessed 25 Nov 2024.

Eich A, Urban V, Jutel M, Vlcek J, Shim JJ, Trofimov VI et al (2017) A randomized, placebo-controlled phase 2 trial of CNTO 6785 in chronic obstructive pulmonary disease. COPD 14:476–483

Article  PubMed  Google Scholar 

Mahler DA, Huang S, Tabrizi M, Bell GM (2004) Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest 126:926–934

Article  CAS  PubMed  Google Scholar 

Wang Z, Locantore N, Haldar K, Ramsheh MY, Beech AS, Ma W et al (2021) Inflammatory endotype-associated airway microbiome in chronic obstructive pulmonary disease clinical stability and exacerbations: a multicohort longitudinal analysis. Am J Resp Crit Care 203:1488–1502

Article  CAS  Google Scholar 

Singh D, Bafadhel M, Brightling CE, Sciurba FC, Curtis JL, Martinez FJ et al (2020) Blood eosinophil counts in clinical trials for chronic obstructive pulmonary disease. Am J Resp Crit Care 202:660–671

Article  CAS  Google Scholar 

Varricchi G, Poto R (2024) Towards precision medicine in COPD: Targeting type 2 cytokines and alarmins. Eur J Intern Med 125:28–31

Article  CAS  PubMed  Google Scholar 

Çolak Y, Afzal S, Marott JL, Vestbo J, Nordestgaard BG, Lange P (2024) Type-2 inflammation and lung function decline in chronic airway disease in the general population. Thorax 79:349–358

PubMed  Google Scholar 

Singh D, Hurst JR, Martinez FJ, Rabe KF, Bafadhel M, Jenkins M et al (2022) Predictive modeling of COPD exacerbation rates using baseline risk factors. Ther Adv Respir Dis 16:1621280654

Article  Google Scholar 

Cayrol C, Girard JP (2022) Interleukin-33 (IL-33): a critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 156:155891

Article  CAS  PubMed  Google Scholar 

Yang T, Cai B, Cao B, Kang J, Wen F, Chen Y et al (2023) Exacerbation in patients with stable COPD in China: analysis of a prospective, 52-week, nationwide, observational cohort study (REAL). Ther Adv Respir Dis 17:1611220615

Google Scholar 

Worth H, Buhl R, Criée CP, Kardos P, Gückel E, Vogelmeier CF (2023) In ‘real world’ patients with COPD, exacerbation history, and not blood eosinophils, is the most reliable predictor of future exacerbations. Resp Res 24:2

Article  CAS  Google Scholar 

Lin L, Song Q, Cheng W, Li T, Zhang P, Liu C et al (2024) Impact of exacerbation history on future risk and treatment outcomes in chronic obstructive pulmonary disease patients: a prospective cohort study based on global initiative for chronic obstructive lung disease (GOLD) A and B classifications. J Glob Health 14:4202

Article  Google Scholar 

Vij N, Chandramani-Shivalingappa P, Van Westphal C, Hole R, Bodas M (2018) Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis. Am J Physiol-Cell Ph 314:C73-87

Article  Google Scholar 

Çolak Y, Løkke A, Marott JL, Lange P, Vestbo J, Nordestgaard BG, et al. (2024) Low smoking exposure and development and prognosis of COPD over four decades: a population-based cohort study. Eur Respir J. 64.

Faiz A, Mahbub RM, Boedijono FS, Tomassen MI, Kooistra W, Timens W et al (2023) IL-33 expression is lower in current smokers at both transcriptomic and protein levels. Am J Resp Crit Care 208:1075–1087

Article  CAS  Google Scholar 

Zhudenkov K, Palmér R, Jauhiainen A, Helmlinger G, Stepanov O, Peskov K et al (2021) Longitudinal FEV(1) and exacerbation risk in COPD: quantifying the association using joint modelling. Int J Chronic Obstr 16:101–111

Google Scholar 

Zider AD, Wang X, Buhr RG, Sirichana W, Barjaktarevic IZ, Cooper CB (2017) Reduced COPD exacerbation risk correlates with improved FEV(1): A meta-regression analysis. Chest 152:494–501

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif