Doxorubicin-Induced Cardiac Remodeling: Mechanisms and Mitigation Strategies

Lushnikova E, Klinnikova M, Molodykh O, Nepomnyashchikh L. Morphological manifestations of heart remodeling in anthracycline-induced dilated cardiomyopathy. Bull Exp Biol Med. 2004;138:607–12. https://doi.org/10.1007/s10517-005-0138-0

Article  CAS  PubMed  Google Scholar 

Octavia Y, Tocchetti CG, Gabrielson KL, et al. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52(6):1213–25. https://doi.org/10.1016/j.yjmcc.2012.03.006

Article  CAS  PubMed  Google Scholar 

Dulf PL, Mocan M, Coadă CA, et al. Doxorubicin-induced acute cardiotoxicity is associated with increased oxidative stress, autophagy, and inflammation in a murine model. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(6):1105–15. https://doi.org/10.1007/s00210-023-02382-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitry MA, Edwards JG. Doxorubicin induced heart failure: Phenotype and molecular mechanisms. Int J Cardiol Heart Vasc. 2016;10:17–24. https://doi.org/10.1016/j.ijcha.2015.11.004

Article  PubMed  Google Scholar 

Hoeger CW, Turissini C, Asnani A. Doxorubicin cardiotoxicity: pathophysiology updates. Curr Treat Options Cardio Med. 2020;22:1–17. https://doi.org/10.1007/s11936-020-00842-w

Article  Google Scholar 

Zhou S, Palmeira CM, Wallace KB. Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett. 2001;121(3):151–7. https://doi.org/10.1016/s0378-4274(01)00329-0

Article  CAS  PubMed  Google Scholar 

Wu R, Wang H-L, Yu H-L, et al. Doxorubicin toxicity changes myocardial energy metabolism in rats. Chem Biol Interact. 2016;244:149–58. https://doi.org/10.1016/j.cbi.2015.12.010

Article  CAS  PubMed  Google Scholar 

Carvalho RA, Sousa RP, Cadete VJ, et al. Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. Toxicology. 2010;270(2–3):92–8. https://doi.org/10.1016/j.tox.2010.01.019

Article  CAS  PubMed  Google Scholar 

Zahler D, Arnold JH, Bar-On T, et al. Valvular heart disease following anthracycline therapy—is it time to look beyond ejection fraction? Life. 2022;12(8):1275. https://doi.org/10.3390/life12081275

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kinoshita T, Yuzawa H, Natori K, et al. Early electrocardiographic indices for predicting chronic doxorubicin-induced cardiotoxicity. J Cardiol. 2021;77(4):388–94. https://doi.org/10.1016/j.jjcc.2020.10.007

Article  PubMed  Google Scholar 

Mobaraki M, Faraji A, Zare M, et al. Molecular mechanisms of cardiotoxicity: a review on major side-effect of doxorubicin. Indian J Pharm Sci. 2017;79:335–44. https://doi.org/10.4172/pharmaceutical-sciences.1000235

Article  CAS  Google Scholar 

Ghasemi K, Vaseghi G, Mansourian M. Pharmacological interventions for preventing anthracycline-induced clinical and subclinical cardiotoxicity: a network meta-analysis of metastatic breast cancer. J Oncol Pharm Pract. 2021;27(2):414–27. https://doi.org/10.1177/1078155220965674

Article  CAS  PubMed  Google Scholar 

Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. Environ Res. 2023;238(Pt 2): 116896. https://doi.org/10.1016/j.envres.2023.116896

Article  CAS  PubMed  Google Scholar 

Li K, Chen W, Ma L, Yan L, Wang B. Approaches for reducing chemo/radiation-induced cardiotoxicity by nanoparticles. Environ Res. 2024;244:117264. https://doi.org/10.1016/j.envres.2023.117264

Article  CAS  PubMed  Google Scholar 

Azevedo PS, Polegato BF, Minicucci MF, Paiva SA, Zornoff LA. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol. 2016;106(1):62–9. https://doi.org/10.5935/abc.20160005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anzai T. Inflammatory mechanisms of cardiovascular remodeling. Circ J. 2018;82(3):629–35. https://doi.org/10.1253/circj.CJ-18-0063

Article  CAS  PubMed  Google Scholar 

Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. 2010;122(25):2727–35. https://doi.org/10.1161/circulationaha.110.942268

Article  PubMed  Google Scholar 

Nishida M, Mi X, Ishii Y, Kato Y, Nishimura A. Cardiac remodeling: novel pathophysiological mechanisms and therapeutic strategies. J Biochem. 2024;176(4):255–62. https://doi.org/10.1093/jb/mvae031

Article  CAS  PubMed  Google Scholar 

González A, Schelbert EB, Díez J, Butler J. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives. J Am Coll Cardiol. 2018;71(15):1696–706. https://doi.org/10.1016/j.jacc.2018.02.021

Article  PubMed  Google Scholar 

Díez J, González A, Kovacic JC. Myocardial interstitial fibrosis in nonischemic heart disease, part 3/4: JACC focus seminar. J Am Coll Cardiol. 2020;75(17):2204–18. https://doi.org/10.1016/j.jacc.2020.03.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res. 2016;114:110–20. https://doi.org/10.1016/j.phrs.2016.10.015

Article  CAS  PubMed  Google Scholar 

Chandrasekhar J, Dangas G, Mehran R. Valvular heart disease in women, differential remodeling, and response to new therapies. Curr Treat Options Cardiovasc Med. 2017;19(9):74. https://doi.org/10.1007/s11936-017-0573-z

Article  PubMed  Google Scholar 

Suthahar N, Meijers WC, Silljé HH, de Boer RA. From inflammation to fibrosis—molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017;14(4):235–50. https://doi.org/10.1007/s11897-017-0343-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu X, Tang J, Wen P, Huang Z, Najafi M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch Biochem Biophys. 2021;708:108952. https://doi.org/10.1016/j.abb.2021.108952

Article  CAS  PubMed  Google Scholar 

Osataphan N, Phrommintikul A, Chattipakorn SC, Chattipakorn N. Effects of doxorubicin-induced cardiotoxicity on cardiac mitochondrial dynamics and mitochondrial function: Insights for future interventions. J Cell Mol Med. 2020;24(12):6534–57. https://doi.org/10.1111/jcmm.15305

Article  PubMed  PubMed Central  Google Scholar 

Kitakata H, Endo J, Ikura H, et al. Therapeutic targets for DOX-induced cardiomyopathy: role of apoptosis vs. ferroptosis. Int J Mol Sci. 2022;23(3):1414. https://doi.org/10.3390/ijms23031414

Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021;12(4):339. https://doi.org/10.1038/s41419-021-03614-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pecoraro M, Del Pizzo M, Marzocco S, et al. Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicol Appl Pharmacol. 2016;293:44–52. https://doi.org/10.1016/j.taap.2016.01.006

Article  CAS  PubMed  Google Scholar 

Shi S, Chen Y, Luo Z, Nie G, Dai Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun Signal. 2023;21(1):61. https://doi.org/10.1186/s12964-023-01077-5

Article  CAS  PubMed 

Comments (0)

No login
gif