Diagnostic performance of deep learning-assisted [F]FDG PET imaging for Alzheimer’s disease: a systematic review and meta-analysis

Terracciano A, Sutin AR. Personality and Alzheimer’s disease: an integrative review. Personal Disord. 2019;10:4–12. https://doi.org/10.1037/per0000268.

Article  PubMed  PubMed Central  Google Scholar 

Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362:329–44. https://doi.org/10.1056/NEJMra0909142.

Article  CAS  PubMed  Google Scholar 

De Stefano C, Fontanella F, Impedovo D, Pirlo G, di Freca AS. Handwriting analysis to support neurodegenerative diseases diagnosis: A review. Pattern Recognit Lett. 2019;121:37–45. https://doi.org/10.1016/j.patrec.2018.05.013.

Article  Google Scholar 

Atri A. The Alzheimer’s disease clinical spectrum: diagnosis and management. Med Clin North Am. 2019;103:263–93. https://doi.org/10.1016/j.mcna.2018.10.009.

Article  PubMed  Google Scholar 

Falahati F, Westman E, Simmons A. Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging. J Alzheimers Dis. 2014;41:685–708. https://doi.org/10.3233/jad-131928.

Article  PubMed  Google Scholar 

Nedelec T, Couvy-Duchesne B, Monnet F, Daly T, Ansart M, Gantzer L, et al. Identifying health conditions associated with Alzheimer’s disease up to 15 years before diagnosis: an agnostic study of French and British health records. Lancet Digit Health. 2022;4:e169–78. https://doi.org/10.1016/s2589-7500(21)00275-2.

Article  CAS  PubMed  Google Scholar 

Fischer CE, Qian W, Schweizer TA, Ismail Z, Smith EE, Millikin CP, et al. Determining the impact of psychosis on rates of false-positive and false-negative diagnosis in Alzheimer’s disease. Alzheimers Dement (N Y). 2017;3:385–92. https://doi.org/10.1016/j.trci.2017.06.001.

Article  PubMed  Google Scholar 

Golde TE. Disease-Modifying therapies for Alzheimer’s disease: more questions than answers. Neurotherapeutics. 2022;19:209–27. https://doi.org/10.1007/s13311-022-01201-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borchert RJ, Azevedo T, Badhwar A, Bernal J, Betts M, Bruffaerts R, et al. Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review. Alzheimers Dement. 2023;19:5885–904. https://doi.org/10.1002/alz.13412.

Article  PubMed  Google Scholar 

Wang M, Jiang J, Yan Z, Alberts I, Ge J, Zhang H, et al. Individual brain metabolic connectome indicator based on Kullback-Leibler divergence similarity Estimation predicts progression from mild cognitive impairment to Alzheimer’s dementia. Eur J Nucl Med Mol Imaging. 2020;47:2753–64. https://doi.org/10.1007/s00259-020-04814-x.

Article  PubMed  PubMed Central  Google Scholar 

Jack CR Jr., Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28. https://doi.org/10.1016/s1474-4422(09)70299-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jagust W, Gitcho A, Sun F, Kuczynski B, Mungas D, Haan M. Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann Neurol. 2006;59:673–81. https://doi.org/10.1002/ana.20799.

Article  PubMed  Google Scholar 

Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging. 2011;32:1207–18. https://doi.org/10.1016/j.neurobiolaging.2009.07.002.

Article  PubMed  Google Scholar 

Kawachi T, Ishii K, Sakamoto S, Sasaki M, Mori T, Yamashita F, et al. Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2006;33:801–9. https://doi.org/10.1007/s00259-005-0050-x.

Article  PubMed  Google Scholar 

Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–46. https://doi.org/10.1016/s1474-4422(07)70178-3.

Article  PubMed  Google Scholar 

Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, et al. Deep learning in medical imaging: general overview. Korean J Radiol. 2017;18:570–84. https://doi.org/10.3348/kjr.2017.18.4.570.

Article  PubMed  PubMed Central  Google Scholar 

Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10:257–73. https://doi.org/10.1007/s12194-017-0406-5.

Article  PubMed  Google Scholar 

Myszczynska MA, Ojamies PN, Lacoste AMB, Neil D, Saffari A, Mead R, et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol. 2020;16:440–56. https://doi.org/10.1038/s41582-020-0377-8.

Article  PubMed  Google Scholar 

Vieira S, Pinaya WH, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci Biobehav Rev. 2017;74:58–75. https://doi.org/10.1016/j.neubiorev.2017.01.002.

Article  PubMed  Google Scholar 

Hainc N, Federau C, Stieltjes B, Blatow M, Bink A, Stippich C. The bright, artificial Intelligence-Augmented future of neuroimaging reading. Front Neurol. 2017;8:489. https://doi.org/10.3389/fneur.2017.00489.

Article  PubMed  PubMed Central  Google Scholar 

Kohoutová L, Heo J, Cha S, Lee S, Moon T, Wager TD, et al. Toward a unified framework for interpreting machine-learning models in neuroimaging. Nat Protoc. 2020;15:1399–435. https://doi.org/10.1038/s41596-019-0289-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plis SM, Hjelm DR, Salakhutdinov R, Allen EA, Bockholt HJ, Long JD, et al. Deep learning for neuroimaging: a validation study. Front Neurosci. 2014;8:229. https://doi.org/10.3389/fnins.2014.00229.

Article  PubMed  PubMed Central  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.

Article  PubMed  PubMed Central  Google Scholar 

McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology. 1984;34:939–44. https://doi.org/10.1212/wnl.34.7.939.

Article  CAS  PubMed  Google Scholar 

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr., Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9. https://doi.org/10.1016/j.jalz.2011.03.005.

Article  PubMed  Google Scholar 

Association AP. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994.

Google Scholar 

Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009.

Article  PubMed  Google Scholar 

Jackson D, Turner R. Power analysis for random-effects meta-analysis. Res Synth Methods. 2017;8:290–302. https://doi.org/10.1002/jrsm.1240.

Article  PubMed  PubMed Central  Google Scholar 

Harbord RM, Whiting P. Metandi: meta-analysis of diagnostic accuracy using hierarchical logistic regression. Stata J. 2009;9:211–29. https://doi.org/10.1177/1536867x0900900203.

Article  Google Scholar 

Dwamena B. (2009) MIDAS: Stata module for meta-analytical integration of diagnostic test accuracy studies. https://EconPapers.repec.org/RePEc:boc:bocode:s456880

Khojaste-Sarakhsi M, Haghighi SS, Ghomi S, Marchiori E. Deep learning for Alzheimer’s disease diagnosis: A survey. Artif Intell Med. 2022;130:102332. https://doi.org/10.1016/j.artmed.2022.102332.

Article 

Comments (0)

No login
gif