Terracciano A, Sutin AR. Personality and Alzheimer’s disease: an integrative review. Personal Disord. 2019;10:4–12. https://doi.org/10.1037/per0000268.
Article PubMed PubMed Central Google Scholar
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362:329–44. https://doi.org/10.1056/NEJMra0909142.
Article CAS PubMed Google Scholar
De Stefano C, Fontanella F, Impedovo D, Pirlo G, di Freca AS. Handwriting analysis to support neurodegenerative diseases diagnosis: A review. Pattern Recognit Lett. 2019;121:37–45. https://doi.org/10.1016/j.patrec.2018.05.013.
Atri A. The Alzheimer’s disease clinical spectrum: diagnosis and management. Med Clin North Am. 2019;103:263–93. https://doi.org/10.1016/j.mcna.2018.10.009.
Falahati F, Westman E, Simmons A. Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging. J Alzheimers Dis. 2014;41:685–708. https://doi.org/10.3233/jad-131928.
Nedelec T, Couvy-Duchesne B, Monnet F, Daly T, Ansart M, Gantzer L, et al. Identifying health conditions associated with Alzheimer’s disease up to 15 years before diagnosis: an agnostic study of French and British health records. Lancet Digit Health. 2022;4:e169–78. https://doi.org/10.1016/s2589-7500(21)00275-2.
Article CAS PubMed Google Scholar
Fischer CE, Qian W, Schweizer TA, Ismail Z, Smith EE, Millikin CP, et al. Determining the impact of psychosis on rates of false-positive and false-negative diagnosis in Alzheimer’s disease. Alzheimers Dement (N Y). 2017;3:385–92. https://doi.org/10.1016/j.trci.2017.06.001.
Golde TE. Disease-Modifying therapies for Alzheimer’s disease: more questions than answers. Neurotherapeutics. 2022;19:209–27. https://doi.org/10.1007/s13311-022-01201-2.
Article CAS PubMed PubMed Central Google Scholar
Borchert RJ, Azevedo T, Badhwar A, Bernal J, Betts M, Bruffaerts R, et al. Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review. Alzheimers Dement. 2023;19:5885–904. https://doi.org/10.1002/alz.13412.
Wang M, Jiang J, Yan Z, Alberts I, Ge J, Zhang H, et al. Individual brain metabolic connectome indicator based on Kullback-Leibler divergence similarity Estimation predicts progression from mild cognitive impairment to Alzheimer’s dementia. Eur J Nucl Med Mol Imaging. 2020;47:2753–64. https://doi.org/10.1007/s00259-020-04814-x.
Article PubMed PubMed Central Google Scholar
Jack CR Jr., Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28. https://doi.org/10.1016/s1474-4422(09)70299-6.
Article CAS PubMed PubMed Central Google Scholar
Jagust W, Gitcho A, Sun F, Kuczynski B, Mungas D, Haan M. Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann Neurol. 2006;59:673–81. https://doi.org/10.1002/ana.20799.
Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging. 2011;32:1207–18. https://doi.org/10.1016/j.neurobiolaging.2009.07.002.
Kawachi T, Ishii K, Sakamoto S, Sasaki M, Mori T, Yamashita F, et al. Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2006;33:801–9. https://doi.org/10.1007/s00259-005-0050-x.
Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–46. https://doi.org/10.1016/s1474-4422(07)70178-3.
Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, et al. Deep learning in medical imaging: general overview. Korean J Radiol. 2017;18:570–84. https://doi.org/10.3348/kjr.2017.18.4.570.
Article PubMed PubMed Central Google Scholar
Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10:257–73. https://doi.org/10.1007/s12194-017-0406-5.
Myszczynska MA, Ojamies PN, Lacoste AMB, Neil D, Saffari A, Mead R, et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol. 2020;16:440–56. https://doi.org/10.1038/s41582-020-0377-8.
Vieira S, Pinaya WH, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci Biobehav Rev. 2017;74:58–75. https://doi.org/10.1016/j.neubiorev.2017.01.002.
Hainc N, Federau C, Stieltjes B, Blatow M, Bink A, Stippich C. The bright, artificial Intelligence-Augmented future of neuroimaging reading. Front Neurol. 2017;8:489. https://doi.org/10.3389/fneur.2017.00489.
Article PubMed PubMed Central Google Scholar
Kohoutová L, Heo J, Cha S, Lee S, Moon T, Wager TD, et al. Toward a unified framework for interpreting machine-learning models in neuroimaging. Nat Protoc. 2020;15:1399–435. https://doi.org/10.1038/s41596-019-0289-5.
Article CAS PubMed PubMed Central Google Scholar
Plis SM, Hjelm DR, Salakhutdinov R, Allen EA, Bockholt HJ, Long JD, et al. Deep learning for neuroimaging: a validation study. Front Neurosci. 2014;8:229. https://doi.org/10.3389/fnins.2014.00229.
Article PubMed PubMed Central Google Scholar
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.
Article PubMed PubMed Central Google Scholar
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology. 1984;34:939–44. https://doi.org/10.1212/wnl.34.7.939.
Article CAS PubMed Google Scholar
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr., Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9. https://doi.org/10.1016/j.jalz.2011.03.005.
Association AP. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994.
Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009.
Jackson D, Turner R. Power analysis for random-effects meta-analysis. Res Synth Methods. 2017;8:290–302. https://doi.org/10.1002/jrsm.1240.
Article PubMed PubMed Central Google Scholar
Harbord RM, Whiting P. Metandi: meta-analysis of diagnostic accuracy using hierarchical logistic regression. Stata J. 2009;9:211–29. https://doi.org/10.1177/1536867x0900900203.
Dwamena B. (2009) MIDAS: Stata module for meta-analytical integration of diagnostic test accuracy studies. https://EconPapers.repec.org/RePEc:boc:bocode:s456880
Khojaste-Sarakhsi M, Haghighi SS, Ghomi S, Marchiori E. Deep learning for Alzheimer’s disease diagnosis: A survey. Artif Intell Med. 2022;130:102332. https://doi.org/10.1016/j.artmed.2022.102332.
Comments (0)