Pt-doped g-CN photocatalyst for simultaneous hydrogen production and value-added chemical synthesis under visible light

Riley, J., Bobek, M., Atallah, C., Siriwardane, R., & Bayham, S. (2023). Syngas and H2 production from natural gas using CaFe2O4 – Looping: Experimental and thermodynamic integrated process assessment. International Journal of Hydrogen Energy, 48(77), 29898–29915. https://doi.org/10.1016/J.IJHYDENE.2023.04.044

Article  CAS  Google Scholar 

Massarweh, O., Al-khuzaei, M., Al-Shafi, M., Bicer, Y., & Abushaikha, A. S. (2023). Blue hydrogen production from natural gas reservoirs A review of application and feasibility. Journal of CO2 Utilization. https://doi.org/10.1016/j.jcou.2023.102438

Article  Google Scholar 

Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37–38. https://doi.org/10.1038/238037a0

Article  CAS  PubMed  Google Scholar 

Zhang, Y., Li, K., Zang, M., Cheng, Y., & Qi, H. (2023). Graphene-based photocatalysts for degradation of organic pollution. Chemosphere, 341, 140038. https://doi.org/10.1016/J.CHEMOSPHERE.2023.140038

Article  CAS  PubMed  Google Scholar 

Tong Yin, Y., Yang, C. L., Wang, M. S., & Ma, X. G. (2023). Edge-passivated graphene nanoribbons as metal free photocatalyst for efficiently photocatalytic overall water splitting with sunlight. Internationa Journal of Hydrogen Energy. https://doi.org/10.1016/J.IJHYDENE.2023.08.010

Article  Google Scholar 

Kacem, K., Hamrouni, A., Ameur, S., Güell, F., Nsib, M. F., & Llobet, E. (2023). ZnO–TiO2/rGOheterostructure for enhanced photodegradation of IC dye under natural solar light and role of rGO in surface hydroxylation. Bulletin of Materials Science. https://doi.org/10.1007/s12034-023-02913-7

Article  Google Scholar 

Saeed, S. F., Jia, L., Arain, M., Ahmed, A., Yikai, F., Zhenda, C., Hussain, I., Abbas Ashraf, G., Ben Ahmed, S., & Dai, H. (2023). Emerging trends in metal-organic framework (MOFs) photocatalysts for hydrogen energy using water splitting: A state-of-the-art review. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/J.JIEC.2023.10.055

Article  Google Scholar 

Ma, D., Zhang, Z., Zou, Y., Chen, J., & Shi, J.-W. (2024). The progress of g-C3N4 in photocatalytic H2 evolution: From fabrication to modification. Coordination Chemistry Reviews, 500, 215489. https://doi.org/10.1016/j.ccr.2023.215489

Article  CAS  Google Scholar 

Qamar, M. A., Javed, M., Shahid, S., Shariq, M., Fadhali, M. M., Ali, S. K., & Khan, M. S. (2023). Synthesis and applications of graphitic carbon nitride (g-C3N4) based membranes for wastewater treatment: A critical review. Heliyon, 9(1), e12685. https://doi.org/10.1016/j.heliyon.2022.e12685

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kroke, E., Schwarz, M., Horath-Bordon, E., Kroll, P., Noll, B., & Norman, A. D. (2002). Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New Journal of Chemistry, 26(5), 508–512. https://doi.org/10.1039/b111062b

Article  CAS  Google Scholar 

Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., & Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76–80. https://doi.org/10.1038/nmat2317

Article  CAS  PubMed  Google Scholar 

Ragupathi, V., Panigrahi, P., & GanapathiSubramaniam, N. (2020). Bandgap engineering in graphitic carbon nitride: Effect of precursors. Optik, 202, 163601. https://doi.org/10.1016/j.ijleo.2019.163601

Article  CAS  Google Scholar 

Wang, Q., Li, Y., Huang, F., Song, S., Ai, G., Xin, X., Zhao, B., Zheng, Y., & Zhang, Z. (2023). Recent advances in g-C3N4-based materials and their application in energy and environmental sustainability. Molecules. https://doi.org/10.3390/molecules28010432

Article  PubMed  PubMed Central  Google Scholar 

Xue, J., Ma, S., Zhou, Y., Zhang, Z., & He, M. (2015). Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Applied Materials & Interfaces, 7(18), 9630–9637. https://doi.org/10.1021/acsami.5b01212

Article  CAS  Google Scholar 

Faisal, M., Jalalah, M., Harraz, F. A., El-Toni, A. M., Khan, A., & Al-Assiri, M. S. (2020). Au nanoparticles-doped g-C3N4 nanocomposites for enhanced photocatalytic performance under visible light illumination. Ceramics International, 46(14), 22090–22101. https://doi.org/10.1016/j.ceramint.2020.05.250

Article  CAS  Google Scholar 

Zhou, X., Li, Y., Xing, Y., Li, J., & Jiang, X. (2019). Effects of the preparation method of Pt/g-C3N4 photocatalysts on their efficiency for visible-light hydrogen production. Dalton Transactions, 48(40), 15068–15073. https://doi.org/10.1039/c9dt02938a

Article  CAS  PubMed  Google Scholar 

Liu, M., Xia, P., Zhang, L., Cheng, B., & Yu, J. (2018). Enhanced photocatalytic H2-production activity of g-C3N4 Nanosheets via optimal photodeposition of Pt as Cocatalyst. ACS Sustainable Chemistry and Engineering., 6(8), 10472–10480. https://doi.org/10.1021/acssuschemeng.8b01835

Article  CAS  Google Scholar 

Guzman, F., Chuang, S. S. C., & Yang, C. (2013). Role of methanol sacrificing reagent in the photocatalytic evolution of hydrogen. Industrial and Engineering Chemistry Research, 52(1), 61–65. https://doi.org/10.1021/ie301177s

Article  CAS  Google Scholar 

Husin, H., Alam, P. N., Zaki, M., & Hasfita, F. (2018). Enhanced photocatalytic hydrogen production from water-ethanol solution by Ruthenium doped La-NaTaO3. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/345/1/012003

Article  Google Scholar 

Husin, H., Pontas, K., Zaki, M., Darmadi, D., & Masna, A. (2019). Enhance photocatalytic of hydrogen production from water-glycerol solution over RuO2-loaded. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1402/5/055008

Article  Google Scholar 

Wahab, A. K., Nadeem, M. A., & Idriss, H. (2019). Hydrogen production during ethylene glycol photoreactions over Ag-Pd/TiO2 at different partial pressures of oxygen. Frontiers in Chemistry, 7(November), 1–16. https://doi.org/10.3389/fchem.2019.00780

Article  CAS  Google Scholar 

Potapenko, K. O., Gerasimov, E. Y., Cherepanova, S. V., Saraev, A. A., & Kozlova, E. A. (2022). Efficient photocatalytic hydrogen production over NiS-modified cadmium and manganese sulfide solid solutions. Materials. https://doi.org/10.3390/ma15228026

Article  PubMed  PubMed Central  Google Scholar 

Costantino, F., & Kamat, P. V. (2022). Do sacrificial donors donate H2 in photocatalysis? ACS Energy Letters, 7(1), 242–246. https://doi.org/10.1021/acsenergylett.1c02487

Article  CAS  Google Scholar 

Zhang, T., & Lu, S. (2022). Sacrificial agents for photocatalytic hydrogen production: Effects, cost, and development. ChemCatal., 2(7), 1502–1505. https://doi.org/10.1016/j.checat.2022.06.023

Article  CAS  Google Scholar 

Chen, T., Li, M., Shen, L., Roeffaers, M. B. J., Weng, B., Zhu, H., Chen, Z., Yu, D., Pan, X., Yang, M. Q., & Qian, Q. (2022). Photocatalytic anaerobic oxidation of aromatic alcohols coupled with H2 production over CsPbBr 3/GO-Pt catalysts. Frontiers in Chemistry, 10(March), 1–9. https://doi.org/10.3389/fchem.2022.833784

Article  CAS  Google Scholar 

Qi, M. Y., Conte, M., Anpo, M., Tang, Z. R., & Xu, Y. J. (2021). Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chemical Reviews, 121(21), 13051–13085. https://doi.org/10.1021/acs.chemrev.1c00197

Article  CAS  PubMed  Google Scholar 

Tang, J. H., & Sun, Y. (2020). Visible-light-driven organic transformations integrated with H2production on semiconductors. Mater. Adv., 1(7), 2155–2162. https://doi.org/10.1039/d0ma00327a

Article  CAS  Google Scholar 

Luo, J., Wang, M., Chen, L., & Shi, J. (2022). Efficient benzaldehyde photosynthesis coupling photocatalytic hydrogen evolution. Journal of Energy Chemistry, 66, 52–60. https://doi.org/10.1016/j.jechem.2021.07.017

Article  CAS  Google Scholar 

Lopes, J. C., Sampaio, M. J., Rosa, B., Lima, M. J., Faria, J. L., & Silva, C. G. (2020). Role of TiO 2 -based photocatalysts on the synthesis of the pharmaceutical precursor benzhydrol by UVA-LED radiation. Journal of Photochemistry & Photobiology A : Chemistry. https://doi.org/10.1016/j.jphotochem.2019.112350

Article  Google Scholar 

Yang, S., Wang, K., Chen, Q., & Wu, Y. (2024). Enhanced photocatalytic hydrogen production of S-scheme TiO2/g-C3N4 heterojunction loaded with single-atom Ni. Journal of Materials Science and Technology, 175, 104–114. https://doi.org/10.1016/j.jmst.2023.07.044

Article  CAS  Google Scholar 

Darkwah, W. K., & Ao, Y. (2018). Mini review on the structure and properties (Photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications. Nanoscale Research Letters, 13(1), 388. https://doi.org/10.1186/s11671-018-2702-3

Comments (0)

No login
gif