Targeted photodynamic elimination of HER2  breast cancer cells mediated by antibody–photosensitizer fusion proteins

Arnold, M., et al. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast, 66, 15–23.

Article  PubMed  PubMed Central  Google Scholar 

Sun, W., et al., Physiology for precision drug delivery. 2019.

Holohan, C., et al. (2013). Cancer drug resistance: An evolving paradigm. Nature Reviews Cancer, 13(10), 714–726.

Article  CAS  PubMed  Google Scholar 

Garrido-Castro, A.C., N.U. Lin, and K. Polyak, Insights into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment. Cancer Discovery, 2019.

Donohoe, C., et al. (2019). Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity., 1872(2), 188308.

CAS  Google Scholar 

Lan, M., et al. (2019). Photosensitizers for Photodynamic Therapy. Adv Healthc Mater, 8(13), e1900132.

Article  PubMed  Google Scholar 

Misba, L., et al. (2018). Efficacy of photodynamic therapy against Streptococcus mutans biofilm: Role of singlet oxygen., 183, 16–21.

CAS  Google Scholar 

Sai, D. L., et al. (2021). Tailoring photosensitive ROS for advanced photodynamic therapy. Experimental & Molecular Medicine, 53(4), 495–504.

Article  CAS  Google Scholar 

Yordi, S., et al. (2021). Photodynamic therapy for choroidal melanoma: What is the response rate? Survey of Ophthalmology, 66(4), 552–559.

Article  PubMed  Google Scholar 

Kim, T. E., & Chang, J. E. (2023). Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics, 15(9), 2257.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao, R., et al. (2023). Targeted photodynamic neutralization of SARS-CoV-2 mediated by singlet oxygen. Photochemical & Photobiological Sciences, 22(6), 1323–1340.

Article  CAS  Google Scholar 

Westberg, M., Etzerodt, M., & Ogilby, P. R. (2019). Rational design of genetically encoded singlet oxygen photosensitizing proteins. Current Opinion in Structural Biology, 57, 56–62.

Article  CAS  PubMed  Google Scholar 

Mogensen, D. J., Etzerodt, M., & Ogilby, P. R. (2022). Photoinduced bleaching in an efficient singlet oxygen photosensitizing protein: Identifying a culprit in the flavin-binding LOV-based protein SOPP3. Journal of Photochemistry and Photobiology A: Chemistry, 429, 113894.

Article  CAS  Google Scholar 

Pinto, D., et al. (2020). Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 583(7815), 290–295.

Article  CAS  PubMed  Google Scholar 

Davide, O., et al., A portable NIR fluorimeter directly quantifies singlet oxygen generated by nanostructures for Photodynamic Therapy. 2021.

Miyamoto, S., et al. Linoleic acid hydroperoxide reacts with hypochlorite generating peroxyl radical intermediates and singlet oxygen. in 11th Annual Meeting of the Society-for-Free-Radical-Biology-and-Medicine. 2004.

Cho, H.S., et al., Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. 2003. 421(6924): p. 756–760.

Diwanji, D., et al. (2021). Structures of the HER2-HER3-NRG1beta complex reveal a dynamic dimer interface. Nature, 600(7888), 339–343.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou, L., et al., Chlorin e6 (Ce6)-loaded plaque-specific liposome with enhanced photodynamic therapy effect for atherosclerosis treatment. 2023: p. 265.

Xie, Y., et al., PtBi-beta-CD-Ce6 Nanozyme for Combined Trimodal Imaging-Guided Photodynamic Therapy and NIR-II Responsive Photothermal Therapy. 2022(18): p. 61.

Cantelli, A., Piro, F., Pecchini, P., Di Giosia, M., Danielli, A., & Calvaresi, M. (2020). Matteo %J Journal of Photochemistry and BBOJotESfP Photobiology Concanavalin A-Rose Bengal bioconjugate for targeted Gram-negative antimicrobial photodynamic therapy. Journal of Photochemistry and Photobiology, B: Biology, 206(1), 111852.

Article  CAS  PubMed  Google Scholar 

Guidotti, G., Brambilla, L., & Rossi, D. (2017). Cell-Penetrating Peptides: From Basic Research to Clinics. Trends in Pharmacological Sciences, 38(4), 406–424.

Article  CAS  PubMed  Google Scholar 

Johansson, H.J., S.E.L. Andaloussi, and U.J.M.i.m.b. Langel, Mimicry of protein function with cell-penetrating peptides. 2011. 683: p. 233–247.

Lukanowska, M., Howl, J., & Jones, S. J. B. J. (2013). Bioportides: Bioactive cell-penetrating peptides that modulate cellular dynamics. Biotechnology Journal, 8(8), 918–930.

Article  CAS  PubMed  Google Scholar 

Fales, A. M., Yuan, H., & Vo-Dinh, T. (2013). Cell-penetrating peptide enhanced intracellular Raman imaging and photodynamic therapy. Molecular Pharmaceutics, 10(6), 2291–2298.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ser, J., et al. (2020). Enhanced Efficacy of Photodynamic Therapy by Coupling a Cell-Penetrating Peptide with Methylene Blue, 15, 5803–5811.

Google Scholar 

Wang, J., et al. (2021). Hypoxia modulation by dual-drug nanoparticles for enhanced synergistic sonodynamic and starvation therapy. J Nanobiotechnology, 19(1), 87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan, L. P., et al. (2020). Systematic comparison of plasma EBV DNA, anti-EBV antibodies and miRNA levels for early detection and prognosis of nasopharyngeal carcinoma. International Journal of Cancer, 146(8), 2336–2347.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif