Photocatalytic conversion of copper (II) ions to metallic copper (0) on TiO nanoparticles

Peng, J., Chen, B., Wang, Z., Jing, G., Binghui, W., Shuqiang, H., Qinghua, Z., Lin, G., Qin, Z., Zhi, L., Shuqin, H., Sifan, Y., Ang, F., Zaifa, S., Hao, X., Duanyun, C., Chang-Jian, L., Gang, F., Lan-Sun, Z., … Nanfeng, Z. (2020). Surface coordination layer passivates oxidation of copper. Nature, 586, 390–394.

Article  CAS  PubMed  Google Scholar 

International Copper Study Group (ICSG) 2024. The World Copper Factbook 2024. Lisbon

Ding, L., Cheng, J., Wang, T., Zhao, J., Chen, C., & Niu, Y. (2019). Continuous electrolytic refining process of cathode copper with non-dissolving anode. Minerals Engineering, 135, 21–28.

Article  CAS  Google Scholar 

UN General Assembly, Transforming our world: the 2030 Agenda for Sustainable Development. A/RES/70/1, 21 October 2015.

Hua-feng, W., Shi-qi, L., Rong, Z., Yu-gang, W., & Run-zao, L. (2009). Experimental research on non-carbon metallurgy by solar photovoltaic technology. Chinese Journal of Engineering, 31(S1), 22–27.

Google Scholar 

Huafeng, W., Shiqi, L., & Mingshan, H. (2014). Experimental research on non-carbon metallurgy by wind-solar hybrid system. Industry Heating, 43(3), 16–19.

Google Scholar 

Melchiorre, P. (2022). Introduction: photochemical catalytic processes. Chemical Reviews, 122(2), 1483–1484.

Article  CAS  PubMed  Google Scholar 

Hassaan, M. A., El-Nemr, M. A., Elkatory, M. R., Ragab, S., Niculescu, V.-C., & Nemr, A. E. (2023). Principles of photocatalysts and their different applications: A review. Topics in Current Chemistry, 381, 31.

Article  CAS  PubMed  Google Scholar 

Kraeutler, B., & Bard, A. J. (1978). Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. Journal of the American Chemical Society, 100(13), 4317–4318.

Article  CAS  Google Scholar 

Chen, Y., Xu, M., Wen, J., Wan, Y., Zhao, Q., Cao, X., Ding, Y., Wang, Z. L., Li, H., & Bian, Z. (2021). Selective recovery of precious metals through photocatalysis. Nature Sustainability, 4, 618–626.

Article  Google Scholar 

Guo, Y., Walter, V., Vanuytsel, S., Parperis, C., Sengel, J. T., Weatherill, E. E., & Wallace, M. I. (2023). Real-time monitoring and control of nanoparticle formation. Journal of the American Chemical Society, 145(29), 15809–15815.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kasper, W., & Guido, M. (2016). Methods, mechanism, and applications of photodeposition in photocatalysis: A review. Chemical Reviews., 116(23), 14587–14619.

Article  Google Scholar 

Pohl, A. (2020). Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air and Soil Pollution, 231, 503.

Article  CAS  Google Scholar 

Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water, 4, 36.

Article  CAS  Google Scholar 

Wan, L., Zhou, Q., Wang, X., Wood, T. E., Wang, L., Duchesne, P. N., Guo, J., Yan, X., Xia, M., Li, Y. F., & Ali, F. M. (2019). Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nature Catalysis, 2, 889–898.

Article  CAS  Google Scholar 

David, B. W., & Barry, C. (2009). Transmission electron microscopy a textbook for materials science. Springer.

Google Scholar 

Zhen-Kun, H., Yongxin, L., Chenxi, Z., Junjian, Z., Zhida, G., & Yan-Yan, S. (2021). Surface-charge regulated TiO2 nanotube arrays as scaffold for constructing binder-free high-performance supercapacitor. Applied Surface Science, 567, 150832.

Article  Google Scholar 

Peter, L. M. (2016). Photocatalysis: Fundamentals and Perspectives (pp. 1–28). The Royal Society of Chemistry.

Book  Google Scholar 

Jéssica, T. S., Daniele, S. F., Ronny, R. R., & Patricio, P.-Z. (2020). Use of scavenger agents in heterogeneous photocatalysis: Truths, half-truths, and misinterpretations. Physical Chemistry Chemical Physics, 22, 15723–15733.

Article  Google Scholar 

Li, D., Yiming, H., Haijin, L., Jianbiao, P., Zhiguo, C., Yakun, Z., Bingjie, W., Xin, C., Yu, C., Tian, W., & Guoguang, L. (2023). Alcohols as scavengers for hydroxyl radicals in photocatalytic systems: Reliable or not? ACS EST Water, 3(11), 3534–3543.

Article  Google Scholar 

Luttrell, T., Halpegamage, S., Tao, J., Alan, K., Eli, S., & Matthias, B. (2014). Why is anatase a better photocatalyst than rutile?—Model studies on epitaxial TiO2 films. Scientific Reports, 4, 4043.

Article  PubMed  PubMed Central  Google Scholar 

Palik, E. D. (1985). Handbook of optical constants of solids. Academic Press.

Google Scholar 

Jian, Z., Song, X., Rongrong, J., Bing, L., & Jinghong, L. (2021). Localized surface plasmon resonance for enhanced electrocatalysis. Chemical Society Reviews, 50, 12070–12097.

Article  Google Scholar 

Yun, C., Yanni, Z., Liren, D., Ningning, W., Yihui, M., Jinglong, Y., & Yu, H. (2019). Optimizing Ag-Pt core-shell nanostructures for solar energy conversion, plasmonic photocatalysis, and photothermal catalysis. Applied Physics Letters, 114, 183902.

Article  Google Scholar 

Angela, A.-T., Romain, M., Didier, R., Nicolas, K., & Valérie, K. (2012). Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions. Journal of Photochemistry and Photobiology A: Chemistry, 250, 58–65.

Article  Google Scholar 

Hua, Y., Shen, Y., Li, K., Wang, J. Y., Chan Y. S., & Chen Y. (2016) Studies on XPS valence state analysis of copper materials, 2016 IEEE 37th International Electronics Manufacturing Technology (IEMT) & 18th Electronics Materials and Packaging (EMAP) Conference, Georgetown, Malaysia, pp. 1-2

Kim, J. Y., Hong, D., Lee, J. C., Hyoung, G. K., Sungwoo, L., Sangyong, S., Beomil, K., Hyunjoo, L., Miyoung, K., Jihun, O., Gun-Do, L., Dae-Hyun, N., & Young-Chang, J. (2021). Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nature Communications, 12, 3765.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daqiang, G., Zhipeng, Z., Zhaolong, Y., & Desheng, X. (2012). Interface mediated ferromagnetism in bulk CuO/Cu2O composites. Applied Physics Letters, 101, 132416.

Article  Google Scholar 

Jian, L., & Mayer, J. W. (1992). Oxidation and reduction of copper oxide thin films. Materials Chemistry and Physics., 32(1), 1–24.

Article  Google Scholar 

Sours, R. E., & Bezabeh, D. Z. (2021). A static headspace GC-MS method for the determination of ethanol in solid or semi-solid consumer goods. Food Analytical Methods, 14, 2569–2575.

Article  Google Scholar 

Darrin, S. M., Justin, T. M., & John, L. F. (1998). Mechanism of the photocatalytic oxidation of ethanol on TiO2. Journal of Catalysis, 173(2), 470–483.

Article  Google Scholar 

Zitong, Y., Yunkai, S., Zexi, H., Haiyan, Y., Mingxue, L., Yanwei, L., Yude, L., Baoyu, G., & Shiping, X. (2023). Repeated fluctuation of Cu2+ concentration during photocatalytic purification of SMZ-Cu2+ combined pollution: Behavior, mechanism and application. Journal of Hazardous Materials, 447, 130768.

Article  Google Scholar 

Guangjun, W., Naijia, G., & Landong, L. (2011). Low temperature CO oxidation on Cu-Cu2O/TiO2, catalyst prepared by photodeposition. Catalysis Science & Technology, 1, 601–608.

Article  Google Scholar 

Comments (0)

No login
gif