Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanisławek, A. (2021). Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers, 13(17), 4287.
Article PubMed PubMed Central Google Scholar
Vahdanikia, V., Maleki, M., Fam, R. A. I., & Abdi, A. (2022). Assessment the effect of human umbilical cord wharton’s jelly stem cells on the expression of homing genes; CXCR4 and VLA-4 in cell line of breast cancer. International Journal of Hematology-Oncology and Stem Cell Research. https://doi.org/10.18502/ijhoscr.v16i2.9204
Article PubMed PubMed Central Google Scholar
Maghsoodi, M. S., Khosroshahi, N. S., Beilankouhi, E. A. V., Valilo, M., & Feizi, M. A. H. (2023). VEGF-634G> C (rs2010963) gene polymorphism and high risk of breast cancer in the Northwest of Iran. Indian Journal of Gynecologic Oncology., 21(1), 6.
Nielsen, T. O., Hsu, F. D., Jensen, K., Cheang, M., Karaca, G., Hu, Z., et al. (2004). Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clinical cancer research., 10(16), 5367–5374.
Article CAS PubMed Google Scholar
Garrido-Castro, C. (2019). Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment. Cancer Discovery, 9, 176.
Article CAS PubMed PubMed Central Google Scholar
Hammerl, D., Martens, J. W., Timmermans, M., Smid, M., Trapman-Jansen, A. M., Foekens, R., et al. (2021). Spatial immunophenotypes predict response to anti-PD1 treatment and capture distinct paths of T cell evasion in triple negative breast cancer. Nature communications, 12(1), 1–13.
Lee, K.-L., Kuo, Y.-C., Ho, Y.-S., & Huang, Y.-H. (2019). Triple-negative breast cancer: Current understanding and future therapeutic breakthrough targeting cancer stemness. Cancers, 11(9), 1334.
Article CAS PubMed PubMed Central Google Scholar
Dent, R., Trudeau, M., Pritchard, K. I., Hanna, W. M., Kahn, H. K., Sawka, C. A., et al. (2007). Triple-negative breast cancer: Clinical features and patterns of recurrence. Clinical Cancer Research, 13(15), 4429–4434.
Ademuyiwa, F. O., Groman, A., O’Connor, T., Ambrosone, C., Watroba, N., & Edge, S. B. (2011). Impact of body mass index on clinical outcomes in triple-negative breast cancer. Cancer, 117(18), 4132–4140.
Shi, J., Liu, F., & Song, Y. (2020). Progress: Targeted therapy, immunotherapy, and new chemotherapy strategies in advanced triple-negative breast cancer. Cancer Management and Research., 12, 9375.
Article CAS PubMed PubMed Central Google Scholar
Carey, L. A., Dees, E. C., Sawyer, L., Gatti, L., Moore, D. T., Collichio, F., et al. (2007). The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clinical Cancer Research, 13(8), 2329–2334.
Article CAS PubMed Google Scholar
Vaz-Luis, I., Ottesen, R. A., Hughes, M. E., Mamet, R., Burstein, H. J., Edge, S. B., et al. (2014). Outcomes by tumor subtype and treatment pattern in women with small, node-negative breast cancer: A multi-institutional study. Journal of Clinical Oncology, 32(20), 2142.
Article PubMed PubMed Central Google Scholar
Schmid, P., Cortes, J., Dent, R., Pusztai, L., McArthur, H., Kümmel, S., et al. (2022). Event-free survival with pembrolizumab in early triple-negative breast cancer. New England Journal of Medicine, 386(6), 556–567.
Article CAS PubMed Google Scholar
Sikov, W. M., Polley, M.-Y., Twohy, E., Perou, C. M., Singh, B., Berry, D. A., et al. (2019). CALGB (Alliance) 40603: Long-term outcomes (LTOs) after neoadjuvant chemotherapy (NACT)+/-carboplatin (Cb) and bevacizumab (Bev) in triple-negative breast cancer (TNBC). American Society of Clinical Oncology. https://doi.org/10.1200/JCO.2019.37.15_suppl.591
Wang, Z., Peng, H., Shi, W., Gan, L., Zhong, L., He, J., et al. (2021). Application of photodynamic therapy in cancer: Challenges and advancements. Biocell, 45(3), 489.
Conklin, K. A. (2004). Chemotherapy-associated oxidative stress: Impact on chemotherapeutic effectiveness. Integrative Cancer Therapies, 3(4), 294–300.
Article CAS PubMed Google Scholar
Alavi, M., Farkhondeh, T., Aschner, M., & Samarghandian, S. (2021). Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation. Cancer Cell International, 21(1), 1–9.
Ailioaie, L. M., Ailioaie, C., & Litscher, G. (2021). Latest innovations and nanotechnologies with curcumin as a nature-inspired photosensitizer applied in the photodynamic therapy of cancer. Pharmaceutics, 13(10), 1562.
Article CAS PubMed PubMed Central Google Scholar
Yanovsky, R. L., Bartenstein, D. W., Rogers, G. S., Isakoff, S. J., & Chen, S. T. (2019). Photodynamic therapy for solid tumors: A review of the literature. Photodermatology, Photoimmunology & Photomedicine, 35(5), 295–303.
Cheong, T.-C., Shin, E. P., Kwon, E.-K., Choi, J.-H., Wang, K.-K., Sharma, P., et al. (2015). Functional manipulation of dendritic cells by photoswitchable generation of intracellular reactive oxygen species. ACS Chemical Biology, 10(3), 757–765.
Article CAS PubMed Google Scholar
Hwang, H. S., Shin, H., Han, J., & Na, K. (2018). Combination of photodynamic therapy (PDT) and anti-tumor immunity in cancer therapy. Journal of Pharmaceutical Investigation, 48(2), 143–151.
Article CAS PubMed PubMed Central Google Scholar
Ozog, D. M., Rkein, A. M., Fabi, S. G., Gold, M. H., Goldman, M. P., Lowe, N. J., et al. (2016). Photodynamic therapy: A clinical consensus guide. Dermatologic Surgery, 42(7), 804–827.
Article CAS PubMed Google Scholar
Wachowska, M., Muchowicz, A., & Demkow, U. (2015). Immunological aspects of antitumor photodynamic therapy outcome. Central European Journal of Immunology, 40(4), 481–485.
Article CAS PubMed Google Scholar
Ragusa, A., Centonze, C., Grasso, M. E., Latronico, M. F., Mastrangelo, P. F., Fanizzi, F. P., et al. (2017). Composition and statistical analysis of biophenols in Apulian Italian EVOOs. Foods, 6(10), 90.
Article PubMed PubMed Central Google Scholar
Gutiérrez-Escobar, R., Aliaño-González, M. J., & Cantos-Villar, E. (2021). Wine polyphenol content and its influence on wine quality and properties: A review. Molecules, 26(3), 718.
Article PubMed PubMed Central Google Scholar
Khan, J., Deb, P. K., Priya, S., Medina, K. D., Devi, R., Walode, S. G., et al. (2021). Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 26(13), 4021.
Article CAS PubMed PubMed Central Google Scholar
Quarta, A., Gaballo, A., Pradhan, B., Patra, S., Jena, M., & Ragusa, A. (2021). Beneficial oxidative stress-related trans-resveratrol effects in the treatment and prevention of breast cancer. Applied Sciences, 11(22), 11041.
Orallo, F. (2006). Comparative studies of the antioxidant effects of cis-and trans-resveratrol. Current Medicinal Chemistry, 13(1), 87–98.
Article CAS PubMed Google Scholar
Liang, Z.-J., Wan, Y., Zhu, D.-D., Wang, M.-X., Jiang, H.-M., Huang, D.-L., et al. (2021). Resveratrol mediates the apoptosis of triple negative breast cancer cells by reducing POLD1 expression. Frontiers in Oncology, 11, 569295.
Article CAS PubMed PubMed Central Google Scholar
Ren, B., Kwah, M.X.-Y., Liu, C., Ma, Z., Shanmugam, M. K., Ding, L., et al. (2021). Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Letters, 515, 63–72.
Article CAS PubMed Google Scholar
Jiang, Z., Chen, K., Cheng, L., Yan, B., Qian, W., Cao, J., et al. (2017). Resveratrol and cancer treatment: Updates. Annals of the New York Academy of Sciences, 1403(1), 59–69.
Comments (0)