How warming impacts the photosynthetic physiology of the bloom-forming cyanobacterium, , under UV exposure

Yan, D., Xu, H., Lan, J., Yang, M., Wang, F., Hou, W., Zhou, K., & An, Z. (2020). Warming favors subtropical lake cyanobacterial biomass increasing. Science of Total Environment, 726, 138606. https://doi.org/10.1016/j.scitotenv.2020.138606

Article  CAS  Google Scholar 

Kleinteich, J., Frassl, M. A., Schulz, M., & Fischer, H. (2024). Climate change triggered planktonic cyanobacterial blooms in a regulated temperate river. Scientific Reports, 14, 16298. https://doi.org/10.1007/s41598-024-66586-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, H., Zhang, J., & Zhu, Y. (2009). Identification of microcystins in waters used for daily life by people who live on Tai Lake during a serious cyanobacteria dominated bloom with risk analysis to human health. Environmental Toxicology, 24, 82–86. https://doi.org/10.1002/tox.20381

Article  CAS  PubMed  Google Scholar 

Zhang, W., Liu, J., Xiao, Y., Zhang, Y., Yu, Y., Zheng, Z., Liu, Y., & Li, Q. (2022). The impact of cyanobacteria blooms on the aquatic environment and human health. Toxins 14, 658. https://www.mdpi.com/2072-6651/14/10/658#

Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W., & Zelinka, M. (2022). Climate simulations: recognize the‘hot model’problem. Nature, 605, 26–29.

Article  CAS  PubMed  Google Scholar 

Bernhard, G. H., Bais, A. F., Aucamp, P. J., Klekociuk, A. R., Liley, J. B., & McKenzie, R. L. (2023). Stratospheric ozone, UV radiation, and climate interactions. Photochemical & Photobiological Sciences, 22, 937–989. https://doi.org/10.1007/s43630-023-00371-y

Article  CAS  Google Scholar 

Alex, E. J., Thackeray, S. J., Huntingford, C., & Jones, R. G. (2005). Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Freshwater Biology, 50, 1404–1411. https://doi.org/10.1111/j.1365-2427.2005.01409.x

Article  Google Scholar 

Joehnk, K. D., Huisman, J., Sharples, J., Sommeijer, B., Visser, P. M., & Stroom, J. M. (2008). Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology, 14, 495–512. https://doi.org/10.1111/j.1365-2486.2007.01510.x

Article  Google Scholar 

Paerl, H. W., & Huisman, J. (2009). Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 1, 27–37. https://doi.org/10.1111/j.1758-2229.2008.00004.x

Article  CAS  PubMed  Google Scholar 

Paerl, H. W., & Paul, V. J. (2012). Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 46, 1349–1363. https://doi.org/10.1016/j.watres.2011.08.002

Article  CAS  PubMed  Google Scholar 

Visser, P. M., Verspagen, J. M., Sandrini, G., Stal, L. J., Matthijs, H. C., Davis, T. W., Paerl, H. W., & Huisman, J. (2016). How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae, 54, 145–159. https://doi.org/10.1016/j.hal.2015.12.006

Article  CAS  PubMed  Google Scholar 

Singh, S. P., & Singh, P. (2015). Effect of temperature and light on the growth of algae species: A review, Renew. Sustainable Energy Reviews, 50, 431–444. https://doi.org/10.1016/j.rser.2015.05.024

Article  CAS  Google Scholar 

Singh, V. K., Jha, S., Rana, P., Mishra, S., Kumari, N., Singh, S. C., Anand, S., Upadhye, V., & Sinha, R. P. (2023). Resilience and mitigation strategies of cyanobacteria under ultraviolet radiation stress. International Journal of Molecular Sciences, 24, 12381. https://doi.org/10.3390/ijms241512381

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, P. R., Gupta, A., Singh, A. P., Jaiswal, J., & Sinha, R. P. (2024). Effects of ultraviolet radiation on cellular functions of the cyanobacterium Synechocystis sp PCC 6803 and its recovery under photosynthetically active radiation. Journal of Photochemistry and Photobiology B Biology, 252, 112866. https://doi.org/10.1016/j.jphotobiol.2024.112866

Article  CAS  PubMed  Google Scholar 

Rastogi, R. P., Sinha, R. P., Moh, S. H., Lee, T. K., Kottuparambil, S., Kim, Y. J., Rhee, J. S., Choi, E. M., Brown, M. T., & Häder, D. P. (2014). Ultraviolet radiation and cyanobacteria. Journal of Photochemistry and Photobiology B: Biology, 141, 154–169. https://doi.org/10.1016/j.jphotobiol.2014.09.020

Article  CAS  PubMed  Google Scholar 

Gao, K., Yu, H., & Brown, M. T. (2007). Solar PAR and UV radiation affects the physiology and morphology of the cyanobacterium Anabaena sp. PCC 7120. Journal of Photochemistry and Photobiology B: Biology, 89, 117–124. https://doi.org/10.1016/j.jphotobiol.2007.09.006

Article  CAS  PubMed  Google Scholar 

Singh, D. K., Pathak, J., Pandey, A., Singh, V., Ahmed, H., Kumar, D., & Sinha, R. P. (2020). Ultraviolet-screening compound mycosporine-like amino acids in cyanobacteria: Biosynthesis, functions, and applications. Advances in Cyanobacterial Biology. https://doi.org/10.1016/B978-0-12-819311-2.00015-2

Article  Google Scholar 

Ma, Z., Fang, T., Thring, R. W., Li, Y., Yu, H., Zhou, Q., & Zhao, M. (2015). Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris. Harmful Algae, 48, 21–29. https://doi.org/10.1016/j.hal.2015.07.002

Article  CAS  PubMed  Google Scholar 

Zheng, T., Zhou, M., Yang, L., Wang, Y., Wang, Y., Meng, Y., Liu, J., & Zuo, Z. (2020). Effects of high light and temperature on Microcystis aeruginosa cell growth and β-cyclocitral emission. Ecotoxicology and Environmental Safety, 192, 110313. https://doi.org/10.1016/j.ecoenv.2020.110313

Article  CAS  PubMed  Google Scholar 

Guo, Y., Meng, H., Zhao, S., Wang, Z., Zhu, L., Deng, D., Liu, J., He, H., Xie, W., & Wang, G. (2023). How does Microcystis aeruginosa respond to elevated temperature? Science of The Total Environment, 889, 164277. https://doi.org/10.1016/j.scitotenv.2023.164277

Article  CAS  PubMed  Google Scholar 

You, J., Mallery, K., Hong, J., & Hondzo, M. (2018). Temperature effects on growth and buoyancy of Microcystis aeruginosa. Journal of Plankton Research, 40, 16–28. https://doi.org/10.1093/plankt/fbx059

Article  Google Scholar 

Yang, J., Tang, H., Zhang, X., Zhu, X., Huang, Y., Yang, Z. (2018). High temperature and pH favor Microcystis aeruginosa to outcompete Scenedesmus obliquus. Environmental Science and Pollution Research, 25, 4794–4802, https://link.springer.com/article/https://doi.org/10.1007/s11356-017-0887-0

Ting, L., Yuanshu, J., & Wei, H. (2015). Effect of high temperature on cell proliferation and recovery of Microcystis aeruginosa at different initial phosphate concentrations. Chinese Journal of Environmental Engineering, 9, 4780–4788.

Google Scholar 

Ou, H., Gao, N., Deng, Y., Qiao, J., & Wang, H. (2012). Immediate and long-term impacts of UV-C irradiation on photosynthetic capacity, survival and microcystin-LR release risk of Microcystis aeruginosa. Water Research, 46, 1241–1250. https://doi.org/10.1016/j.watres.2011.12.025

Article  CAS  PubMed  Google Scholar 

Giannuzzi, L., & Hernando, M. (2022). The Eco-physiological role of Microcystis aeruginosa in a changing world. Microorganisms, 10, 685, https://www.mdpi.com/2076-2607/10/4/685#

Ding, Y., Song, L., & Sedmak, B. (2013). UVB radiation as a potential selective factor favoring microcystin producing bloom forming cyanobacteria. PLoS ONE, 8, e73919. https://doi.org/10.1371/journal.pone.0073919

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giannuzzi, L., Krock, B., Minaglia, M. C. C., Rosso, L., Houghton, C., Sedan, D., Malanga, G., Espinosa, M., Andrinolo, D., & Hernando, M. (2016). Growth, toxin production, active oxygen species and catalase activity of Microcystis aeruginosa (Cyanophyceae) exposed to temperature stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 189, 22–30. https://doi.org/10.1016/j.cbpc.2016.07.001

Article  CAS  Google Scholar 

de la Rosa, F., De Troch, M., Gabriela, M., & Marcelo, H. (2021). Physiological responses and specific fatty acids composition of Microcystis aeruginosa exposed to total solar radiation and increased temperature. Photochemical & Photobiological Sciences, 20, 805–821. https://doi.org/10.1007/s43630-021-00061-7

Article  CAS  Google Scholar 

Islam, M. A., & Beardall, J. (2020). Effects of temperature on the UV-B sensitivity of toxic cyanobacteria Microcystis aeruginosa CS558 and Anabaena circinalis CS537. Photochemistry and Photobiology, 96, 936–940. https://doi.org/10.1111/php.13214

Article  CAS  PubMed  Google Scholar 

Noyma, N. P., Mesquita, M. C., Roland, F., Marinho, M. M., Huszar, V. L., & Lürling, M. (2021). Increasing temperature counteracts the negative effect of UV radiation on growth and photosynthetic efficiency of Microcystis aeruginosa and Raphidiopsis raciborskii. Photochemistry and Photobiology, 97, 753–762. https://doi.org/10.1111/php.13377

Article  CAS  PubMed  Google Scholar 

Yan, F., Li, M. Z., Zang, S. S., Xu, Z. G., Bao, M. L., & Wu, H. (2024). UV radiation and temperature increase alter the PSII function and defense mechanisms in a bloom-forming cyanobacterium Microcystis aeruginosa. Frontiers in Microbiology, 15, 1351796.

Comments (0)

No login
gif