Yan, D., Xu, H., Lan, J., Yang, M., Wang, F., Hou, W., Zhou, K., & An, Z. (2020). Warming favors subtropical lake cyanobacterial biomass increasing. Science of Total Environment, 726, 138606. https://doi.org/10.1016/j.scitotenv.2020.138606
Kleinteich, J., Frassl, M. A., Schulz, M., & Fischer, H. (2024). Climate change triggered planktonic cyanobacterial blooms in a regulated temperate river. Scientific Reports, 14, 16298. https://doi.org/10.1007/s41598-024-66586-w
Article CAS PubMed PubMed Central Google Scholar
Zhang, H., Zhang, J., & Zhu, Y. (2009). Identification of microcystins in waters used for daily life by people who live on Tai Lake during a serious cyanobacteria dominated bloom with risk analysis to human health. Environmental Toxicology, 24, 82–86. https://doi.org/10.1002/tox.20381
Article CAS PubMed Google Scholar
Zhang, W., Liu, J., Xiao, Y., Zhang, Y., Yu, Y., Zheng, Z., Liu, Y., & Li, Q. (2022). The impact of cyanobacteria blooms on the aquatic environment and human health. Toxins 14, 658. https://www.mdpi.com/2072-6651/14/10/658#
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W., & Zelinka, M. (2022). Climate simulations: recognize the‘hot model’problem. Nature, 605, 26–29.
Article CAS PubMed Google Scholar
Bernhard, G. H., Bais, A. F., Aucamp, P. J., Klekociuk, A. R., Liley, J. B., & McKenzie, R. L. (2023). Stratospheric ozone, UV radiation, and climate interactions. Photochemical & Photobiological Sciences, 22, 937–989. https://doi.org/10.1007/s43630-023-00371-y
Alex, E. J., Thackeray, S. J., Huntingford, C., & Jones, R. G. (2005). Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Freshwater Biology, 50, 1404–1411. https://doi.org/10.1111/j.1365-2427.2005.01409.x
Joehnk, K. D., Huisman, J., Sharples, J., Sommeijer, B., Visser, P. M., & Stroom, J. M. (2008). Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology, 14, 495–512. https://doi.org/10.1111/j.1365-2486.2007.01510.x
Paerl, H. W., & Huisman, J. (2009). Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 1, 27–37. https://doi.org/10.1111/j.1758-2229.2008.00004.x
Article CAS PubMed Google Scholar
Paerl, H. W., & Paul, V. J. (2012). Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 46, 1349–1363. https://doi.org/10.1016/j.watres.2011.08.002
Article CAS PubMed Google Scholar
Visser, P. M., Verspagen, J. M., Sandrini, G., Stal, L. J., Matthijs, H. C., Davis, T. W., Paerl, H. W., & Huisman, J. (2016). How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae, 54, 145–159. https://doi.org/10.1016/j.hal.2015.12.006
Article CAS PubMed Google Scholar
Singh, S. P., & Singh, P. (2015). Effect of temperature and light on the growth of algae species: A review, Renew. Sustainable Energy Reviews, 50, 431–444. https://doi.org/10.1016/j.rser.2015.05.024
Singh, V. K., Jha, S., Rana, P., Mishra, S., Kumari, N., Singh, S. C., Anand, S., Upadhye, V., & Sinha, R. P. (2023). Resilience and mitigation strategies of cyanobacteria under ultraviolet radiation stress. International Journal of Molecular Sciences, 24, 12381. https://doi.org/10.3390/ijms241512381
Article CAS PubMed PubMed Central Google Scholar
Singh, P. R., Gupta, A., Singh, A. P., Jaiswal, J., & Sinha, R. P. (2024). Effects of ultraviolet radiation on cellular functions of the cyanobacterium Synechocystis sp PCC 6803 and its recovery under photosynthetically active radiation. Journal of Photochemistry and Photobiology B Biology, 252, 112866. https://doi.org/10.1016/j.jphotobiol.2024.112866
Article CAS PubMed Google Scholar
Rastogi, R. P., Sinha, R. P., Moh, S. H., Lee, T. K., Kottuparambil, S., Kim, Y. J., Rhee, J. S., Choi, E. M., Brown, M. T., & Häder, D. P. (2014). Ultraviolet radiation and cyanobacteria. Journal of Photochemistry and Photobiology B: Biology, 141, 154–169. https://doi.org/10.1016/j.jphotobiol.2014.09.020
Article CAS PubMed Google Scholar
Gao, K., Yu, H., & Brown, M. T. (2007). Solar PAR and UV radiation affects the physiology and morphology of the cyanobacterium Anabaena sp. PCC 7120. Journal of Photochemistry and Photobiology B: Biology, 89, 117–124. https://doi.org/10.1016/j.jphotobiol.2007.09.006
Article CAS PubMed Google Scholar
Singh, D. K., Pathak, J., Pandey, A., Singh, V., Ahmed, H., Kumar, D., & Sinha, R. P. (2020). Ultraviolet-screening compound mycosporine-like amino acids in cyanobacteria: Biosynthesis, functions, and applications. Advances in Cyanobacterial Biology. https://doi.org/10.1016/B978-0-12-819311-2.00015-2
Ma, Z., Fang, T., Thring, R. W., Li, Y., Yu, H., Zhou, Q., & Zhao, M. (2015). Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris. Harmful Algae, 48, 21–29. https://doi.org/10.1016/j.hal.2015.07.002
Article CAS PubMed Google Scholar
Zheng, T., Zhou, M., Yang, L., Wang, Y., Wang, Y., Meng, Y., Liu, J., & Zuo, Z. (2020). Effects of high light and temperature on Microcystis aeruginosa cell growth and β-cyclocitral emission. Ecotoxicology and Environmental Safety, 192, 110313. https://doi.org/10.1016/j.ecoenv.2020.110313
Article CAS PubMed Google Scholar
Guo, Y., Meng, H., Zhao, S., Wang, Z., Zhu, L., Deng, D., Liu, J., He, H., Xie, W., & Wang, G. (2023). How does Microcystis aeruginosa respond to elevated temperature? Science of The Total Environment, 889, 164277. https://doi.org/10.1016/j.scitotenv.2023.164277
Article CAS PubMed Google Scholar
You, J., Mallery, K., Hong, J., & Hondzo, M. (2018). Temperature effects on growth and buoyancy of Microcystis aeruginosa. Journal of Plankton Research, 40, 16–28. https://doi.org/10.1093/plankt/fbx059
Yang, J., Tang, H., Zhang, X., Zhu, X., Huang, Y., Yang, Z. (2018). High temperature and pH favor Microcystis aeruginosa to outcompete Scenedesmus obliquus. Environmental Science and Pollution Research, 25, 4794–4802, https://link.springer.com/article/https://doi.org/10.1007/s11356-017-0887-0
Ting, L., Yuanshu, J., & Wei, H. (2015). Effect of high temperature on cell proliferation and recovery of Microcystis aeruginosa at different initial phosphate concentrations. Chinese Journal of Environmental Engineering, 9, 4780–4788.
Ou, H., Gao, N., Deng, Y., Qiao, J., & Wang, H. (2012). Immediate and long-term impacts of UV-C irradiation on photosynthetic capacity, survival and microcystin-LR release risk of Microcystis aeruginosa. Water Research, 46, 1241–1250. https://doi.org/10.1016/j.watres.2011.12.025
Article CAS PubMed Google Scholar
Giannuzzi, L., & Hernando, M. (2022). The Eco-physiological role of Microcystis aeruginosa in a changing world. Microorganisms, 10, 685, https://www.mdpi.com/2076-2607/10/4/685#
Ding, Y., Song, L., & Sedmak, B. (2013). UVB radiation as a potential selective factor favoring microcystin producing bloom forming cyanobacteria. PLoS ONE, 8, e73919. https://doi.org/10.1371/journal.pone.0073919
Article CAS PubMed PubMed Central Google Scholar
Giannuzzi, L., Krock, B., Minaglia, M. C. C., Rosso, L., Houghton, C., Sedan, D., Malanga, G., Espinosa, M., Andrinolo, D., & Hernando, M. (2016). Growth, toxin production, active oxygen species and catalase activity of Microcystis aeruginosa (Cyanophyceae) exposed to temperature stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 189, 22–30. https://doi.org/10.1016/j.cbpc.2016.07.001
de la Rosa, F., De Troch, M., Gabriela, M., & Marcelo, H. (2021). Physiological responses and specific fatty acids composition of Microcystis aeruginosa exposed to total solar radiation and increased temperature. Photochemical & Photobiological Sciences, 20, 805–821. https://doi.org/10.1007/s43630-021-00061-7
Islam, M. A., & Beardall, J. (2020). Effects of temperature on the UV-B sensitivity of toxic cyanobacteria Microcystis aeruginosa CS558 and Anabaena circinalis CS537. Photochemistry and Photobiology, 96, 936–940. https://doi.org/10.1111/php.13214
Article CAS PubMed Google Scholar
Noyma, N. P., Mesquita, M. C., Roland, F., Marinho, M. M., Huszar, V. L., & Lürling, M. (2021). Increasing temperature counteracts the negative effect of UV radiation on growth and photosynthetic efficiency of Microcystis aeruginosa and Raphidiopsis raciborskii. Photochemistry and Photobiology, 97, 753–762. https://doi.org/10.1111/php.13377
Article CAS PubMed Google Scholar
Yan, F., Li, M. Z., Zang, S. S., Xu, Z. G., Bao, M. L., & Wu, H. (2024). UV radiation and temperature increase alter the PSII function and defense mechanisms in a bloom-forming cyanobacterium Microcystis aeruginosa. Frontiers in Microbiology, 15, 1351796.
Comments (0)