Identifying suicidal ideation in Chinese higher vocational students using machine learning: a cross-sectional survey

Ilic M, Ilic I (2022) Worldwide suicide mortality trends (2000–2019): a joinpoint regression analysis. World J Psychiatry 12(8):1044–1060

Article  PubMed  PubMed Central  Google Scholar 

World Health Organization (2021) Suicide worldwide in 2019: global health estimates

Yang Z et al (2015) An analysis on unnatural deaths of college students. Stud Psychol Behav 13:698–701

Google Scholar 

Lin X et al (2023) The influence of social support on higher vocational students’ learning motivation: the mediating role of belief in a just world and the moderating role of gender. Psychol Res Behav Manag 16:1471–1483

Article  PubMed  PubMed Central  Google Scholar 

Wang G (2020) Making choices? The lives of vocational college students in China. University of Glasgow, Glasgow

Google Scholar 

Xu X, Zhang Y, Liu L (2022) Application of sandplay therapy in the mental health education of vocational college students. Comput Math Methods Med 2022:6141326

PubMed  PubMed Central  Google Scholar 

Chen C et al (2015) The prevalence and related factors of depressive symptoms among junior college nursing students: a cross-sectional study. J Psychiatr Ment Health Nurs 22(8):590–598

Article  PubMed  Google Scholar 

Yang S et al (2019) Relationships between depression, health-related behaviors, and internet addiction in female junior college students. PLoS ONE 14(8):e0220784

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Z et al (2014) Prevalence of suicidal ideation in Chinese college students: a meta-analysis. PLoS ONE 9(10):e104368

Article  PubMed  PubMed Central  Google Scholar 

Xie Q, Shi GR. Suicide behavior comparison research and prevention strategy between undergraduates and higher vocational students—based on the investigation of most colleges in Hunan. Journal of Jiangxi Vocational and Technical College of Electricity.

Busby Grant J et al (2023) Specific anxiety and depression symptoms are risk factors for the onset of suicidal ideation and suicide attempts in youth. J Affect Disord 327:299–305

Article  PubMed  Google Scholar 

Klonsky ED, May AM (2015) The three-step theory (3ST): A new theory of suicide rooted in the “ideation-to-action” framework. Int J Cogn Ther 8(2):114–129

Article  Google Scholar 

Okado I et al (2021) Applying ideation-to-action theories to predict suicidal behavior among adolescents. J Affect Disord 295:1292–1300

Article  PubMed  Google Scholar 

Klonsky E, May A, Saffer B (2016) Suicide, suicide attempts, and suicidal ideation. Annu Rev Clin Psychol 12:307–330

Article  PubMed  Google Scholar 

Nock M et al (2013) Prevalence, correlates, and treatment of lifetime suicidal behavior among adolescents: results from the National Comorbidity Survey Replication Adolescent Supplement. JAMA Psychiat 70(3):300–310

Article  Google Scholar 

Calear AL et al (2016) A systematic review of psychosocial suicide prevention interventions for youth. Eur Child Adolesc Psychiatry 25(5):467–482

Article  PubMed  Google Scholar 

Marzetti H, McDaid L, O’Connor R (2023) A qualitative study of young people’s lived experiences of suicide and self-harm: intentionality, rationality and authenticity. Child Adolesc Mental Health. https://doi.org/10.1111/camh.12641

Article  Google Scholar 

Gao X et al (2010) There is a long way to go: a nationwide survey of professional training for mental health practitioners in China. Health policy (Amsterdam, Netherlands) 95(1):74–81

Article  PubMed  Google Scholar 

Tang S et al (2008) Tackling the challenges to health equity in China. Lancet (London, England) 372(9648):1493–1501

Article  PubMed  Google Scholar 

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

Article  CAS  PubMed  Google Scholar 

Lin GM et al (2020) Machine learning based suicide ideation prediction for military personnel. IEEE J Biomed Health Inform 24(7):1907–1916

Article  PubMed  Google Scholar 

Walsh C, Ribeiro J, Franklin J (2018) Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning. J Child Psychol Psychiatry 59(12):1261–1270

Article  PubMed  Google Scholar 

Lei C et al (2023) Ecological momentary assessment and machine learning for predicting suicidal ideation among sexual and gender minority individuals. JAMA Netw Open 6(9):e2333164

Article  PubMed  PubMed Central  Google Scholar 

Meda N et al (2023) Frequency and machine learning predictors of severe depressive symptoms and suicidal ideation among university students. Epidemiol Psychiatr Sci 32:e42

Article  PubMed  PubMed Central  Google Scholar 

Huang Y et al (2022) Comparison of three machine learning models to predict suicidal ideation and depression among Chinese adolescents: a cross-sectional study. J Affect Disord 319:221–228

Article  PubMed  Google Scholar 

Dr C (1958) The regression analysis of binary sequences (with discussion). J Roy Stat Soc B 20:215–242

Article  Google Scholar 

Cortes C, Vapnik VN (1995) Support-vector networks. Mach Learn J 20:273–297

Article  Google Scholar 

Breiman L (2001) Random forests. Mach Learn 45:5–32

Article  Google Scholar 

Rumelhart D, Hinton GE, Williams RJ (1986) Learning representations by backpropagating errors. Nature 323:533–536

Article  Google Scholar 

Foa E et al (2010) Development and validation of a child version of the obsessive compulsive inventory. Behav Ther 41(1):121–132

Article  PubMed  Google Scholar 

Cao X et al. (2013) Psychometric properties of obsessive compulsive inventory-child version in Chinese adolescents. Chin J Clinical Psychol 1381

Lovibond SH (1995) Manual for the depression anxiety stress scales. Sydney psychology foundation, Sydney

Google Scholar 

Vignola RCB, Tucci AM (2014) Adaptation and validation of the depression, anxiety and stress scale (DASS) to Brazilian Portuguese. J Affect Disord 155:104–109

Article  PubMed  Google Scholar 

Wang K et al (2016) Cross-cultural validation of the depression anxiety stress scale–21 in China. Psychol Assess 28(5):e88

Article  PubMed  Google Scholar 

Smilkstein G (1978) The family APGAR: a proposal for family function test and its use by physicians. J Fam Pract 6(6):1231–1239

CAS  PubMed  Google Scholar 

Nan H et al (2014) Psychometric evaluation of the Chinese version of the subjective happiness scale: evidence from the Hong Kong FAMILY Cohort. Int J Behav Med 21(4):646–652

Article  PubMed  PubMed Central  Google Scholar 

Georgieva S, Tomas J, Navarro-Pérez J (2021) Systematic review and critical appraisal of Childhood Trauma Questionnaire—Short Form (CTQ-SF). Child Abuse Negl 120:105223

Article  PubMed  Google Scholar 

He J et al (2019) Psychometric properties of the Chinese version of the Childhood Trauma Questionnaire-Short Form (CTQ-SF) among undergraduates and depressive patients. Child Abuse Negl 91:102–108

Article  PubMed  Google Scholar 

Hirschfeld R et al (2000) Development and validation of a screening instrument for bipolar spectrum disorder: the Mood Disorder Questionnaire. Am J Psychiatry 157(11):1873–1875

Article  CAS  PubMed  Google Scholar 

YangHc Y (2010) Validity and reliability of the Chinese version mood disorder questionnaire. Chin J Psychiatry 43(4):217–220

Google Scholar 

Chawla NV et al (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

Article  Google Scholar 

Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: International conference on machine learning. PMLR.

Rhodes A et al (2014) Antecedents and sex/gender differences in youth suicidal behavior. World J Psychiatry 4(4):120–132

Article 

Comments (0)

No login
gif