Germline mosaicism in TCF20-associated neurodevelopmental disorders: a case study and literature review

Wilfert AB, Sulovari A, Turner TN, Coe BP, Eichler EE. Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications. Genome Med. 2017;9:101.

Article  PubMed  PubMed Central  Google Scholar 

Lin Y, Afshar S, Rajadhyaksha AM, Potash JB, Han S. A Machine Learning Approach to Predicting Autism Risk Genes: Validation of Known Genes and Discovery of New Candidates. Front Genet. 2020;11:500064.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huang S, Xu J, Li Y, Mo W, Lin X, Wang Y, et al. A syndrome featuring developmental disorder of the nervous system induced by a novel mutation in the TCF20 gene, rarely concurrent immune disorders: a case report. Front Genet. 2023;14:1192668.

Article  PubMed  PubMed Central  Google Scholar 

Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell. 2020;180:568–584.e23.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shen EH, Overly CC, Jones AR. The Allen Human Brain Atlas. Trends in Neurosciences. 2012;35:1–92. https://doi.org/10.1016/j.tins.2012.09.005

Article  CAS  Google Scholar 

Mitz AR, Philyaw TJ, Boccuto L, Shcheglovitov A, Sarasua SM, Kaufmann WE, et al. Identification of 22q13 genes most likely to contribute to Phelan McDermid syndrome. European Journal of Human Genetics. 2018;26:293–302.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Carithers LJ, Moore HM. The Genotype-Tissue Expression (GTEx) Project. Biopreservation and Biobanking. 2015;13:307–8.

Article  PubMed  PubMed Central  Google Scholar 

Adams MS, Gammill LS, Bronner-Fraser M. Discovery of transcription factors and other candidate regulators of neural crest development. Developmental Dynamics. 2008;237:1021–33.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–76.

Article  PubMed  CAS  Google Scholar 

Sanz L, Moscat J, Diaz-Meco MT. Molecular characterization of a novel transcription factor that controls stromelysin expression. Molecular and cellular biology. 1995;15:3164–70.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rekdal C, Sjøttem E, Johansen T. The Nuclear Factor SPBP Contains Different Functional Domains and Stimulates the Activity of Various Transcriptional Activators. Journal of Biological Chemistry. 2000;275:40288–300.

Article  PubMed  CAS  Google Scholar 

Gburcik V, Bot N, Maggiolini M, Picard D. SPBP is a phosphoserine-specific repressor of estrogen receptor alpha. Molecular and cellular biology. 2005;25:3421–30.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Feng C, Zhao J, Ji F, Su L, Chen Y, Jiao J. TCF20 dysfunction leads to cortical neurogenesis defects and autistic-like behaviors in mice. EMBO Rep. 2020;21:e49239.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Vetrini F, McKee S, Rosenfeld JA, Suri M, Lewis AM, Nugent KM, et al. De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome. Genome Medicine. 2019;11:12.

Article  PubMed  PubMed Central  Google Scholar 

Darvekar S, Rekdal C, Johansen T, Sjøttem E. A phylogenetic study of SPBP and RAI1: evolutionary conservation of chromatin binding modules. PLoS One. 2013;8:e78907.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Babbs C, Lloyd D, Pagnamenta AT, Twigg SR, Green J, McGowan SJ, et al. De novo and rare inherited mutations implicate the transcriptional coregulator TCF20/SPBP in autism spectrum disorder. Journal of Medical Genetics. 2014;51:737–47.

Article  PubMed  CAS  Google Scholar 

Schäfgen J, Cremer K, Becker J, Wieland T, Zink AM, Kim S, et al. De novo nonsense and frameshift variants of TCF20 in individuals with intellectual disability and postnatal overgrowth. European Journal of Human Genetics. 2016;24:1739–45.

Article  PubMed  PubMed Central  Google Scholar 

Kurtas N, Arrigoni F, Errichiello E, Zucca C, Maghini C, D'Angelo MG, et al. Chromothripsis and ring chromosome 22: A paradigm of genomic complexity in the Phelan-McDermid syndrome (22q13 deletion syndrome). Journal of Medical Genetics. 2018;55:269–77.

Article  PubMed  CAS  Google Scholar 

Upadia J, Gonzales PR, Atkinson TP, Schroeder HW, Robin NH, Rudy NL, et al. A previously unrecognized 22q13.2 microdeletion syndrome that encompasses TCF20 and TNFRSF13C. American Journal of Medical Genetics, Part A. 2018;176:2791–7.

Article  PubMed  CAS  Google Scholar 

Lévy J, Cogan G, Maruani A, Maillard A, Dupont C, Drunat S, et al. Rare and de novo duplications containing TCF20 are associated with a neurodevelopmental disorder. Clinical Genetics. 2022;101:364–70. https://doi.org/10.1111/cge.14099

Article  PubMed  CAS  Google Scholar 

Schneeweiss, MR, Dale, B & Ejaz, R Diagnosis and clinical presentation of two individuals with a rare TCF20 pathogenic variant. BMJ Case Reports (2022), 15 https://doi.org/10.1136/bcr-2022-248995.

Svorenova T, Romito LM, Colangelo I, Han V, Jech R, Prokisch H, et al. Dystonia as a prominent feature of TCF20-associated neurodevelopmental disorder: Expanding the phenotype. Parkinsonism Relat Disord. 2022;102:89–91.

Article  PubMed  Google Scholar 

Córdoba-Jover B, Ribera J, Portolés I, Lecue E, Rodriguez-Vita J, Pérez-Sisqués L, et al. Tcf20 deficiency is associated with increased liver fibrogenesis and alterations in mitochondrial metabolism in mice and humans. Liver Int. 2023;43:1822–36.

Article  PubMed  Google Scholar 

Lelieveld SH, Reijnders MR, Pfundt R, Yntema HG, Kamsteeg EJ, de Vries P, et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nature Neuroscience. 2016;19:1194–6.

Article  PubMed  CAS  Google Scholar 

McRae JF, et al. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8. https://doi.org/10.1038/nature21062

Article  CAS  Google Scholar 

Torti E, Keren B, Palmer EE, Zhu Z, Afenjar A, Anderson IJ, et al. Variants in TCF20 in neurodevelopmental disability: description of 27 new patients and review of literature. Genetics in Medicine. 2019;21:2036–42. https://doi.org/10.1038/s41436-019-0454-9

Article  PubMed  PubMed Central  Google Scholar 

Lift Genome Annotations. https://genome.ucsc.edu/cgi-bin/hgLiftOver.

Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Briefings in Bioinformatics. 2013;14:178–92.

Article  PubMed  Google Scholar 

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

Article  PubMed  PubMed Central  CAS  Google Scholar 

McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biology. 2016;17:122.

Article  PubMed  PubMed Central  Google Scholar 

Samocha KE, Robinson EB, Sanders SJ, Stevens C, Sabo A, McGrath LM, et al. A framework for the interpretation of de novo mutation in human disease. Nature Genetics. 2014;46:944–50.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif