Molecular gene signature of circulating stromal/stem cells

Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100:157–68. https://doi.org/10.1016/s0092-8674(00)81692-x.

Article  PubMed  CAS  Google Scholar 

Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 2011;12:126–31. https://doi.org/10.1038/nrm3049.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lin W, et al. Mesenchymal stem cells homing to improve bone healing. J Orthop Transl. 2017;9:19–27. https://doi.org/10.1016/j.jot.2017.03.002.

Article  Google Scholar 

Lin W, Xu L, Li G. A novel protocol for isolation and culture of multipotent progenitor cells from human urine. J Orthop Translation. 2019;19:12–17.

Article  Google Scholar 

Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science. 2005;308:1472–7.

Article  PubMed  CAS  Google Scholar 

Caplan AI. The mesengenic process. Clin Plast Surg. 1994;21:429–35.

Article  PubMed  CAS  Google Scholar 

Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7:259–64. https://doi.org/10.1016/s1471-4914(01)02016-0.

Article  PubMed  CAS  Google Scholar 

Abdallah B, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 2008;15:109–16.

Article  PubMed  CAS  Google Scholar 

Bianco P, Robey PG. Marrow stromal stem cells. J Clin Investig. 2000;105:1663–8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Forte D, et al. Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy. Cell Metab. 2020;32:829–43. https://doi.org/10.1016/j.cmet.2020.09.001.

Article  PubMed  PubMed Central  CAS  Google Scholar 

To LB, Haylock DN, Simmons PJ, Juttner CA. The biology and clinical uses of blood stem cells. Blood. 1997;89:2233–58.

Article  PubMed  CAS  Google Scholar 

He Q, Wan C, Li G. Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells. 2007;25:69–77. https://doi.org/10.1634/stemcells.2006-0335.

Article  PubMed  CAS  Google Scholar 

Ojeda-Uribe M, et al. Bloodstream Progenitor-Cell Traffic In Primary Myelofibrosis Reveals Cell Subsets Showing Some Features Of Very-Small Embryonnic-Like Stem Cells (VSELs), Along With Endothelial (PEC), Mesenchymal (MPC) and Hematopoietic (HPC) Progenitor Cells. Blood. 2013; 122, https://doi.org/10.1182/blood.V122.21.5265.5265.

Lin W, et al. Characterisation of multipotent stem cells from human peripheral blood using an improved protocol. J Orthop Transl. 2019;19:18–28. https://doi.org/10.1016/j.jot.2019.02.003.

Article  Google Scholar 

Mansilla E, et al. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: New evidence for their use in regenerative medicine. Transplant. 2006;P 38:967–9. https://doi.org/10.1016/j.transproceed.2006.02.053.

Article  Google Scholar 

Alm JJ, et al. Circulating plastic adherent mesenchymal stem cells in aged hip fracture patients. J Orthop Res. 2010;28:1634–42. https://doi.org/10.1002/jor.21167.

Article  PubMed  CAS  Google Scholar 

Roufosse CA, Direkze NC, Otto WR, Wright NA. Circulating mesenchymal stem cells. Int J Biochem Cell Biol. 2004;36:585–97. https://doi.org/10.1016/j.biocel.2003.10.007.

Article  PubMed  CAS  Google Scholar 

Champlin RE, et al. Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. Blood, J Am Soc Hematol. 2000;95:3702–9.

CAS  Google Scholar 

Zvaifler NJ, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000;2:477–88. https://doi.org/10.1186/ar130.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xu LL, Li G. Circulating mesenchymal stem cells and their clinical implications. J Orthop Transl. 2014;2:1–7. https://doi.org/10.1016/j.jot.2013.11.002.

Article  Google Scholar 

Feehan J, Kassem M, Pignolo RJ, Duque G. Bone From Blood: Characteristics and Clinical Implications of Circulating Osteogenic Progenitor (COP) Cells. J Bone Min Res. 2021;36:12–23. https://doi.org/10.1002/jbmr.4204.

Article  Google Scholar 

Feehan J, et al. Higher Levels of Circulating Osteoprogenitor Cells Are Associated With Higher Bone Mineral Density and Lean Mass in Older Adults: A Cross-Sectional Study. JBMR. 2021;5:e10561 https://doi.org/10.1002/jbm4.10561.

Article  CAS  Google Scholar 

Chen YR, et al. The Use of Peripheral Blood-Derived Stem Cells for Cartilage Repair and Regeneration In Vivo: A Review. Front Pharm. 2020;11:404 https://doi.org/10.3389/fphar.2020.00404.

Article  Google Scholar 

Lin W, et al. Alleviation of osteoarthritis by intra-articular transplantation of circulating mesenchymal stem cells. Biochem Biophys Res Commun. 2022;636:25–32.

Article  PubMed  CAS  Google Scholar 

Wölfel EM, et al. Senescence of skeletal stem cells and their contribution to age-related bone loss. Mechanisms Ageing Dev. 2024;221:111976.

Article  Google Scholar 

Ye Z, et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood. J Am Soc Hematol. 2009;114:5473–80.

CAS  Google Scholar 

Yin JQ, Zhu J, Ankrum JA. Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng. 2019;3:90–104.

Article  PubMed  CAS  Google Scholar 

Rochefort GY, et al. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells. 2006;24:2202–8.

Article  PubMed  CAS  Google Scholar 

Liu G-Y, et al. Short-term memory of danger signals or environmental stimuli in mesenchymal stem cells: implications for therapeutic potential. Cell Mol Immunol. 2016;13:369–78.

Article  PubMed  CAS  Google Scholar 

Hoang DM, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7:1–41.

Google Scholar 

Starckx S, Van den Steen PE, Wuyts A, Van Damme J, Opdenakker G. Neutrophil gelatinase B and chemokines in leukocytosis and stem cell mobilization. Leuk Lymphoma. 2002;43:233–41. https://doi.org/10.1080/10428190290005982.

Article  PubMed  CAS  Google Scholar 

Pelus LM, Broxmeyer HE. Peripheral blood stem cell mobilization; a look ahead. Curr Stem Cell Rep. 2018;4:273–81. https://doi.org/10.1007/s40778-018-0141-9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hotten G, Neidhardt H, Jacobowsky B, Pohl J. Cloning and expression of recombinant human growth/differentiation factor 5. Biochem Biophys Res Commun. 1994;204:646–52. https://doi.org/10.1006/bbrc.1994.2508.

Article  PubMed  CAS  Google Scholar 

Buxton P, Edwards C, Archer CW, Francis-West P. Growth/differentiation factor-5 (GDF-5) and skeletal development. J Bone Jt Surg Am. 2001;1:S23–30.

Google Scholar 

Bae MS, et al. Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone. 2014;59:189–98. https://doi.org/10.1016/j.bone.2013.11.019.

Article 

Comments (0)

No login
gif