Alcantara D, Timms AE, Gripp K, Baker L, Park K, Collins S, et al. Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly. Brain. 2017;140:2610–22.
Article PubMed PubMed Central Google Scholar
Dobyns WB, Mirzaa GM. Megalencephaly syndromes associated with mutations of core components of the PI3K-AKT-MTOR pathway: PIK3CA, PIK3R2, AKT3, and MTOR. Am J Med Genet C Semin Med Genet. 2019;181:582–90.
Article PubMed CAS Google Scholar
Nellist M, Schot R, Hoogeveen-Westerveld M, Neuteboom RF, van der Louw EJ, Lequin MH, et al. Germline activating AKT3 mutation associated with megalencephaly, polymicrogyria, epilepsy and hypoglycemia. Mol Genet Metab. 2015;114:467–73.
Article PubMed CAS Google Scholar
Negishi Y, Miya F, Hattori A, Johmura Y, Nakagawa M, Ando N, et al. A combination of genetic and biochemical analyses for the diagnosis of PI3K-AKT-mTOR pathway-associated megalencephaly. BMC Med Genet. 2017;18:4.
Article PubMed PubMed Central Google Scholar
Takagi M, Dobashi K, Nagahara K, Kato M, Nishimura G, Fukuzawa R, et al. A novel de novo germline mutation Glu40Lys in AKT3 causes megalencephaly with growth hormone deficiency. Am J Med Genet A. 2017;173:1071–6.
Article PubMed CAS Google Scholar
Mori J, Hasegawa T, Miyamoto Y, Kitamura K, Morimoto H, Tozawa T, et al. Thyroid hypogenesis is associated with a novel AKT3 germline variant that causes megalencephaly and cortical malformation. Hum Genome Var. 2022;9:18.
Article PubMed PubMed Central CAS Google Scholar
Song GOG, Bao S. The activation of Akt:PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9:59–71.
Article PubMed PubMed Central CAS Google Scholar
Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet. 2012;44:941–5.
Article PubMed PubMed Central CAS Google Scholar
Lim JS, Kim WI, Kang HC, Kim SH, Park AH, Park EK, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med. 2015;21:395–400.
Article PubMed CAS Google Scholar
Hisatsune C, Shimada T, Miyamoto A, Lee A, Yamagata K. Tuberous Sclerosis Complex (TSC) Inactivation Increases Neuronal Network Activity by Enhancing Ca(2+) Influx via L-Type Ca(2+) Channels. J Neurosci. 2021;41:8134–49.
Article PubMed PubMed Central CAS Google Scholar
Rodriguez-Lebron E, Gouvion CM, Moore SA, Davidson BL, Paulson HL. Allele-specific RNAi mitigates phenotypic progression in a transgenic model of Alzheimer’s disease. Mol Ther. 2009;17:1563–73.
Article PubMed PubMed Central CAS Google Scholar
de Ynigo-Mojado L, Martin-Ruiz I, Sutherland JD. Efficient allele-specific targeting of LRRK2 R1441 mutations mediated by RNAi. PLoS One. 2011;6:e21352.
Article PubMed PubMed Central Google Scholar
Romano R, De Luca M, Del Fiore VS, Pecoraro M, Lattante S, Sabatelli M, et al. Allele-specific silencing as therapy for familial amyotrophic lateral sclerosis caused by the p.G376D TARDBP mutation. Brain Commun. 2022;4:fcac315.
Article PubMed PubMed Central Google Scholar
Lenk GM, Jafar-Nejad P, Hill SF, Huffman LD, Smolen CE, Wagnon JL, et al. Scn8a Antisense Oligonucleotide Is Protective in Mouse Models of SCN8A Encephalopathy and Dravet Syndrome. Ann Neurol. 2020;87:339–46.
Article PubMed PubMed Central CAS Google Scholar
Li M, Jancovski N, Jafar-Nejad P, Burbano LE, Rollo B, Richards K, et al. Antisense oligonucleotide therapy reduces seizures and extends life span in an SCN2A gain-of-function epilepsy model. J Clin Invest. 2021;131:e152079.
Burbano LE, Li M, Jancovski N, Jafar-Nejad P, Richards K, Sedo A, et al. Antisense oligonucleotide therapy for KCNT1 encephalopathy. JCI Insight. 2022;7:e146090.
Alshaer W, Zureigat H, Al Karaki A, Al-Kadash A, Gharaibeh L, Hatmal MM, et al. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol. 2021;905:174178.
Article PubMed CAS Google Scholar
Lai D, Gade M, Yang E, Koh HY, Lu J, Walley NM, et al. Somatic variants in diverse genes leads to a spectrum of focal cortical malformations. Brain. 2022;145:2704–20.
Article PubMed PubMed Central Google Scholar
Akula SK, Chen AY, Neil JE, Shao DD, Mo A, Hylton NK, et al. Exome Sequencing and the Identification of New Genes and Shared Mechanisms in Polymicrogyria. JAMA Neurol. 2023;80:980–8.
Article PubMed PubMed Central Google Scholar
Bourgon N, Carmignac V, Sorlin A, Duffourd Y, Philippe C, Thauvin-Robinet C, et al. Clinical and molecular data in cases of prenatal localized overgrowth disorder: major implication of genetic variants in PI3K-AKT-mTOR signaling pathway. Ultrasound Obstet Gynecol. 2022;59:532–42.
Article PubMed CAS Google Scholar
Cornthwaite M, Turner K, Armstrong L, Boerkoel CF, Chang C, Lehman A, et al. Impact of variation in practice in the prenatal reporting of variants of uncertain significance by commercial laboratories: Need for greater adherence to published guidelines. Prenat Diagn. 2022;42:1514–24.
Mellone S, Puricelli C, Vurchio D, Ronzani S, Favini S, Maruzzi A, et al. The Usefulness of a Targeted Next Generation Sequencing Gene Panel in Providing Molecular Diagnosis to Patients With a Broad Spectrum of Neurodevelopmental Disorders. Front Genet. 2022;13:875182.
Article PubMed PubMed Central CAS Google Scholar
Renard E, Bonnet C, Di Patrizio M, Schmitt E, Madkaud AC, Chabot C, et al. Megalencephaly secondary to a novel germline missense variant p.Asp322Tyr in AKT3 associated with growth hormone deficiency and central hypothyroidism: A case report. Am J Med Genet A. 2024;194:e63585.
Comments (0)