An HJ, Lee D, Lee KH, Bhak J (2004) The association of Alu repeats with the generation of potential AU-rich elements (ARE) at 3’ untranslated regions. BMC Genomics 5:97. https://doi.org/10.1186/1471-2164-5-97
Article CAS PubMed PubMed Central Google Scholar
Azarsina S, Otoukesh B, Taheriazam A et al (2017) Diagnostic investigations of PLA2G16 and CDH11 expression levels as independent prognostic markers of human osteosarcoma. Arch Med Sci 6:1347–1351. https://doi.org/10.5114/aoms.2016.59710
Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314
CAS PubMed PubMed Central Google Scholar
Capshew CR, Dusenbury KL, Hundley HA (2012) Inverted Alu dsRNA structures do not affect localization but can alter translation efficiency of human mRNAs independent of RNA editing. Nucleic Acids Res 40:8637–8645. https://doi.org/10.1093/nar/gks590
Article CAS PubMed PubMed Central Google Scholar
Carrieri C, Cimatti L, Biagioli M et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457. https://doi.org/10.1038/nature11508
Article CAS PubMed Google Scholar
Chen C-Y, Chen S-T, Juan H-F, Huang H-C (2012) Lengthening of 3′UTR increases with morphological complexity in animal evolution. Bioinformatics 28:3178–3181. https://doi.org/10.1093/bioinformatics/bts623
Article CAS PubMed Google Scholar
Chen C, Wang W, Wang X et al (2019) Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mob DNA 10:19. https://doi.org/10.1186/s13100-019-0161-8
Article PubMed PubMed Central Google Scholar
Chen C, D’Alessandro E, Murani E et al (2021a) SINE jumping contributes to large-scale polymorphisms in the pig genomes. Mob DNA 12:17. https://doi.org/10.1186/s13100-021-00246-y
Article CAS PubMed PubMed Central Google Scholar
Chen C, Zheng Y, Wang M et al (2021b) SINE insertion in the intron of pig GHR may decrease its expression by acting as a repressor. Animals 11:1871. https://doi.org/10.3390/ani11071871
Article PubMed PubMed Central Google Scholar
Clark LA, Wahl JM, Rees CA, Murphy KE (2006) Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proc Natl Acad Sci 103:1376–1381. https://doi.org/10.1073/pnas.0506940103
Article CAS PubMed PubMed Central Google Scholar
Deragon J-M, Gilbert N, Rouquet L et al (1996) A transcriptional analysis of the S1Bn (Brassica napus) family of SINE retroposons. Plant Mol Biol 32:869–878. https://doi.org/10.1007/BF00020484
Article CAS PubMed Google Scholar
Duncan RE, Sarkadi-Nagy E, Jaworski K et al (2008) Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA). J Biol Chem 283:25428–25436. https://doi.org/10.1074/jbc.M804146200
Article CAS PubMed PubMed Central Google Scholar
Elbarbary RA, Lucas BA, Maquat LE (2016) Retrotransposons as regulators of gene expression. Science (1979) 351. https://doi.org/10.1126/SCIENCE.AAC7247/ASSET/2B881D09-FE4B-4740-BF52-4566654237B4/ASSETS/GRAPHIC/351_AAC7247_F5.JPEG
Estécio MRH, Gallegos J, Dekmezian M et al (2012) SINE retrotransposons cause epigenetic reprogramming of adjacent gene promoters. Mol Cancer Res 10:1332–1342. https://doi.org/10.1158/1541-7786.MCR-12-0351
Article CAS PubMed PubMed Central Google Scholar
Faulkner GJ, Kimura Y, Daub CO et al (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41:563–571. https://doi.org/10.1038/ng.368
Article CAS PubMed Google Scholar
Fuentes RR, Chebotarov D, Duitama J et al (2019) Structural variants in 3000 rice genomes. Genome Res 29:870–880. https://doi.org/10.1101/gr.241240.118
Article CAS PubMed PubMed Central Google Scholar
Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3’ UTRs via Alu elements. Nature 470:284–288. https://doi.org/10.1038/nature09701
Article CAS PubMed PubMed Central Google Scholar
Ichiyanagi K (2013) Epigenetic regulation of transcription and possible functions of mammalian short interspersed elements, SINEs. Genes Genet Syst 88:19–29. https://doi.org/10.1266/ggs.88.19
Article CAS PubMed Google Scholar
Jarrard WE, Schultz A, Etheridge T et al (2019) Screening of urine identifies PLA2G16 as a field defect methylation biomarker for prostate cancer detection. PLoS ONE 14:e0218950. https://doi.org/10.1371/journal.pone.0218950
Article CAS PubMed PubMed Central Google Scholar
Kalla SE, Moghadam HK, Tomlinson M, et al (2020) Polymorphic SINEC_Cf retrotransposons in the genome of the dog (Canis familiaris). bioRxiv 2020.10.27.358119. https://doi.org/10.1101/2020.10.27.358119
Lehnert S, Van Loo P, Thilakarathne PJ et al (2009) Evidence for co-evolution between human microRNAs and Alu-repeats. PLoS ONE 4:e4456. https://doi.org/10.1371/journal.pone.0004456
Article CAS PubMed PubMed Central Google Scholar
Mandal AK, Pandey R, Jha V, Mukerji M (2013) Transcriptome-wide expansion of non-coding regulatory switches: evidence from co-occurrence of Alu exonization, antisense and editing. Nucleic Acids Res 41:2121–2137. https://doi.org/10.1093/nar/gks1457
Article CAS PubMed PubMed Central Google Scholar
Mayr C (2016) Evolution and biological roles of alternative 3′UTRs. Trends Cell Biol 26:227–237. https://doi.org/10.1016/j.tcb.2015.10.012
Article CAS PubMed Google Scholar
Piriyapongsa J, Mariño-Ramírez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337. https://doi.org/10.1534/genetics.107.072553
Article CAS PubMed PubMed Central Google Scholar
Schein A, Zucchelli S, Kauppinen S et al (2016) Identification of antisense long noncoding RNAs that function as SINEUPs in human cells. Sci Rep. https://doi.org/10.1038/srep33605
Article PubMed PubMed Central Google Scholar
Smith CEL, Alexandraki A, Cordery SF et al (2017) A tissue-specific promoter derived from a SINE retrotransposon drives biallelic expression of PLAGL1 in human lymphocytes. PLoS ONE 12:e0185678. https://doi.org/10.1371/journal.pone.0185678
Article CAS PubMed PubMed Central Google Scholar
Staring J, von Castelmur E, Blomen VA et al (2017) PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature 541:412–416. https://doi.org/10.1038/nature21032
Article CAS PubMed Google Scholar
Sundaram V, Cheng Y, Ma Z et al (2014) Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res 24:1963–1976. https://doi.org/10.1101/gr.168872.113
Article CAS PubMed PubMed Central Google Scholar
Trizzino M, Kapusta A, Brown CD (2018) Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics 19:468. https://doi.org/10.1186/s12864-018-4850-3
Comments (0)