A 280 bp SINE insertion within the pig could potentially modify gene expression through integration with its transcript

An HJ, Lee D, Lee KH, Bhak J (2004) The association of Alu repeats with the generation of potential AU-rich elements (ARE) at 3’ untranslated regions. BMC Genomics 5:97. https://doi.org/10.1186/1471-2164-5-97

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azarsina S, Otoukesh B, Taheriazam A et al (2017) Diagnostic investigations of PLA2G16 and CDH11 expression levels as independent prognostic markers of human osteosarcoma. Arch Med Sci 6:1347–1351. https://doi.org/10.5114/aoms.2016.59710

Article  CAS  Google Scholar 

Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314

CAS  PubMed  PubMed Central  Google Scholar 

Capshew CR, Dusenbury KL, Hundley HA (2012) Inverted Alu dsRNA structures do not affect localization but can alter translation efficiency of human mRNAs independent of RNA editing. Nucleic Acids Res 40:8637–8645. https://doi.org/10.1093/nar/gks590

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carrieri C, Cimatti L, Biagioli M et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457. https://doi.org/10.1038/nature11508

Article  CAS  PubMed  Google Scholar 

Chen C-Y, Chen S-T, Juan H-F, Huang H-C (2012) Lengthening of 3′UTR increases with morphological complexity in animal evolution. Bioinformatics 28:3178–3181. https://doi.org/10.1093/bioinformatics/bts623

Article  CAS  PubMed  Google Scholar 

Chen C, Wang W, Wang X et al (2019) Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mob DNA 10:19. https://doi.org/10.1186/s13100-019-0161-8

Article  PubMed  PubMed Central  Google Scholar 

Chen C, D’Alessandro E, Murani E et al (2021a) SINE jumping contributes to large-scale polymorphisms in the pig genomes. Mob DNA 12:17. https://doi.org/10.1186/s13100-021-00246-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen C, Zheng Y, Wang M et al (2021b) SINE insertion in the intron of pig GHR may decrease its expression by acting as a repressor. Animals 11:1871. https://doi.org/10.3390/ani11071871

Article  PubMed  PubMed Central  Google Scholar 

Clark LA, Wahl JM, Rees CA, Murphy KE (2006) Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proc Natl Acad Sci 103:1376–1381. https://doi.org/10.1073/pnas.0506940103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deragon J-M, Gilbert N, Rouquet L et al (1996) A transcriptional analysis of the S1Bn (Brassica napus) family of SINE retroposons. Plant Mol Biol 32:869–878. https://doi.org/10.1007/BF00020484

Article  CAS  PubMed  Google Scholar 

Duncan RE, Sarkadi-Nagy E, Jaworski K et al (2008) Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA). J Biol Chem 283:25428–25436. https://doi.org/10.1074/jbc.M804146200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elbarbary RA, Lucas BA, Maquat LE (2016) Retrotransposons as regulators of gene expression. Science (1979) 351. https://doi.org/10.1126/SCIENCE.AAC7247/ASSET/2B881D09-FE4B-4740-BF52-4566654237B4/ASSETS/GRAPHIC/351_AAC7247_F5.JPEG

Estécio MRH, Gallegos J, Dekmezian M et al (2012) SINE retrotransposons cause epigenetic reprogramming of adjacent gene promoters. Mol Cancer Res 10:1332–1342. https://doi.org/10.1158/1541-7786.MCR-12-0351

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faulkner GJ, Kimura Y, Daub CO et al (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41:563–571. https://doi.org/10.1038/ng.368

Article  CAS  PubMed  Google Scholar 

Fuentes RR, Chebotarov D, Duitama J et al (2019) Structural variants in 3000 rice genomes. Genome Res 29:870–880. https://doi.org/10.1101/gr.241240.118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3’ UTRs via Alu elements. Nature 470:284–288. https://doi.org/10.1038/nature09701

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ichiyanagi K (2013) Epigenetic regulation of transcription and possible functions of mammalian short interspersed elements, SINEs. Genes Genet Syst 88:19–29. https://doi.org/10.1266/ggs.88.19

Article  CAS  PubMed  Google Scholar 

Jarrard WE, Schultz A, Etheridge T et al (2019) Screening of urine identifies PLA2G16 as a field defect methylation biomarker for prostate cancer detection. PLoS ONE 14:e0218950. https://doi.org/10.1371/journal.pone.0218950

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalla SE, Moghadam HK, Tomlinson M, et al (2020) Polymorphic SINEC_Cf retrotransposons in the genome of the dog (Canis familiaris). bioRxiv 2020.10.27.358119. https://doi.org/10.1101/2020.10.27.358119

Lehnert S, Van Loo P, Thilakarathne PJ et al (2009) Evidence for co-evolution between human microRNAs and Alu-repeats. PLoS ONE 4:e4456. https://doi.org/10.1371/journal.pone.0004456

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandal AK, Pandey R, Jha V, Mukerji M (2013) Transcriptome-wide expansion of non-coding regulatory switches: evidence from co-occurrence of Alu exonization, antisense and editing. Nucleic Acids Res 41:2121–2137. https://doi.org/10.1093/nar/gks1457

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayr C (2016) Evolution and biological roles of alternative 3′UTRs. Trends Cell Biol 26:227–237. https://doi.org/10.1016/j.tcb.2015.10.012

Article  CAS  PubMed  Google Scholar 

Piriyapongsa J, Mariño-Ramírez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337. https://doi.org/10.1534/genetics.107.072553

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schein A, Zucchelli S, Kauppinen S et al (2016) Identification of antisense long noncoding RNAs that function as SINEUPs in human cells. Sci Rep. https://doi.org/10.1038/srep33605

Article  PubMed  PubMed Central  Google Scholar 

Smith CEL, Alexandraki A, Cordery SF et al (2017) A tissue-specific promoter derived from a SINE retrotransposon drives biallelic expression of PLAGL1 in human lymphocytes. PLoS ONE 12:e0185678. https://doi.org/10.1371/journal.pone.0185678

Article  CAS  PubMed  PubMed Central  Google Scholar 

Staring J, von Castelmur E, Blomen VA et al (2017) PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature 541:412–416. https://doi.org/10.1038/nature21032

Article  CAS  PubMed  Google Scholar 

Sundaram V, Cheng Y, Ma Z et al (2014) Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res 24:1963–1976. https://doi.org/10.1101/gr.168872.113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trizzino M, Kapusta A, Brown CD (2018) Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics 19:468. https://doi.org/10.1186/s12864-018-4850-3

Article 

Comments (0)

No login
gif