Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Software 67:1–48. https://doi.org/10.18637/jss.v067.i01
Bevan MW, Uauy C (2013) Genomics reveals new landscapes for crop improvement. Genome Biol 14:206. https://doi.org/10.1186/gb-2013-14-6-206
Article CAS PubMed PubMed Central Google Scholar
Butoto EN, Marino TP, Holland JB (2021) Effects of artificial inoculation on trait correlations with resistance to Fusarium ear rot and fumonisin contamination in maize. Crop Sci 61:2522–2533. https://doi.org/10.1002/csc2.20551
Chen J, Ding J, Li H, Li Z, Sun X, Li J, Wang R, Dai X, Dong H, Song W, Chen W, Xia Z, Wu J (2012) Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol Breed 30:1649–1656. https://doi.org/10.1007/s11032-012-9748-1
Chen J, Shrestha R, Ding J, Zheng H, Mu C, Wu J, Mahuku G (2016) Genome-wide association study and QTL mapping reveal genomic loci associated with Fusarium ear rot resistance in tropical maize germplasm. G3 6:3803–3815. https://doi.org/10.1534/g3.116.034561/-/DC1
Article CAS PubMed PubMed Central Google Scholar
Clements MJ, Kleinschmidt CE, Maragos CM, Pataky JK, White DG (2003) Evaluation of inoculation techniques for Fusarium ear rot and fumonisin contamination of corn. Plant Dis 87:147–153. https://doi.org/10.2118/82233-MS
Article CAS PubMed Google Scholar
Coan MMD, Senhorinho HJC, Pinto RJB, Scapim CA, Tessmann DJ, Williams WP, Warburton ML (2018) Genome-wide association study of resistance to ear rot by Fusarium verticillioides in a tropical field maize and popcorn core collection. Crop Sci 58:564–578. https://doi.org/10.2135/cropsci2017.05.0322
Ding JQ, Wang XM, Chander S, Yan JB, Li JS (2008) QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed 22:395–403. https://doi.org/10.1007/s11032-008-9184-4
Duan C, Cui L, Xia Y, Dong H, Yang Z, Hu Q, Sun S, Xiao L, Zhu Z, Wang X (2022) Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot. Acta Agronomica Sinica 48(9):2155–2167. https://doi.org/10.3724/SP.J.1006.2022.13055
Fandohan P, Hell K, Marasas WFO, Wingfield MJ (2003) Infection of maize by Fusarium species and contamination with fumonisin in Africa. Afr J Biotechnol 2:570–579. https://doi.org/10.5897/AJB2003.000-1110
Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117. https://doi.org/10.1126/science.1177837
Article CAS PubMed Google Scholar
Guo Z, Wang H, Tao J, Ren Y, Xu C, Wu K, Zou C, Zhang J, Xu Y (2019) Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed 39:37. https://doi.org/10.1007/s11032-019-0940-4
Guo Z, Zou C, Liu X, Wang S, Li WX, Jeffers D, Fan X, Xu M, Xu Y (2020) Complex genetic system involved in Fusarium ear rot resistance in maize as revealed by GWAS, bulked sample analysis, and genomic prediction. Plant Dis 104:1725–1735. https://doi.org/10.1094/PDIS-07-19-1552-RE
Article CAS PubMed Google Scholar
Guo Z, Yang Q, Huang F, Zheng H, Sang Z, Xu Y, Zhang C, Wu K, Tao J, Prasanna BM, Olsen MS, Wang Y, Zhang J, Xu Y (2021) Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Commun 2:100230. https://doi.org/10.1016/j.xplc.2021.100230
Article CAS PubMed PubMed Central Google Scholar
Guo Z, Wang S, Li WX, Liu J, Guo W, Xu M, Xu Y (2022) QTL mapping and genomic selection for Fusarium ear rot resistance using two F2:3 populations in maize. Euphytica 218:131. https://doi.org/10.1007/s10681-022-03083-z
Guo Z, Wang S, Li WX, Zhong T, Fan XM, Guo W, Xu M, Xu Y (2024) Comprehensive diallel analysis of combining ability and heterosis to Fusairum verticillioides ear rot resistance in maize. Crop Sci 64:2243–2260. https://doi.org/10.1002/csc2.21282
Han S, Utz HF, Liu W, Schrag TA, Stange M, Wurschum T, Miedaner T, Bauer E, Schon CC, Melchinger AE (2016) Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize. Theor Appl Genet 129(2):431–444. https://doi.org/10.1007/s00122-015-2637-3
Article CAS PubMed Google Scholar
Hung HY, Holland JB (2012) Diallel analysis of resistance to Fusarium ear rot and Fumonisin contamination in maize. Crop Sci 52:2173–2181. https://doi.org/10.2135/cropsci2012.03.0154
Kivikoski M, Rastas P, Löytynoja A, Merilä (2023) Predicting recombination frequency from map distance. Heredity 130:114-121. https://doi.org/10.1038/s41437-022-00585-3
Li ZM, Ding JQ, Wang RX, Chen JF, Sun XD, Chen W, Song WB, Dong HF, Dai XD, Xia ZL, Wu JY (2011) A new QTL for resistance to Fusarium ear rot in maize. J Appl Genet 52:403–406. https://doi.org/10.1007/s13353-011-0054-0
Logrieco A, Battilani P, Legggieri MC, Jiang Y, Haesaert G, Lanubile A, Mahuku G, Mesterházy A, Ortega-Beltran A, Pasti M, Smeu I, Torres A, Xu J, Munkvold G (2021) Perspectives on global mycotoxin issues and management from the mycokey maize working group. Plant Dis 105:525–537. https://doi.org/10.1094/PDIS-06-20-1322-FE
Article CAS PubMed Google Scholar
Maschietto V, Colombi C, Pirona R, Pea G, Strozzi F, Marocco A, Rossini L, Lanubile A (2017) QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biol 17:20. https://doi.org/10.1186/s12870-017-0970-1
Article CAS PubMed PubMed Central Google Scholar
Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal 3(3):269–283. https://doi.org/10.1016/j.cj.2015.01.001
Mesterházy Á, Lemmens M, Reid LM (2012) Breeding for resistance to ear rots caused by Fusarium spp. in maize–a review. Plant Breed 131:1–19
Morales L, Zila CT, Moreta Mejía DE, Montoya Arbelaez M, Balint-Kurti PJ, Holland JB, Nelson RJ (2019) Diverse components of resistance to Fusarium verticillioides infection and fumonisin contamination in four maize recombinant inbred families. Toxins 11:86. https://doi.org/10.3390/toxins11020086
Article CAS PubMed PubMed Central Google Scholar
Morales-Rodríguez I, Yañez-Morales MJ, Silva-Rojas HV, García-de-Los-Santos G, Guzmán-de-Peña DA (2007) Biodiversity of Fusarium species in Mexico associated with ear rot in maize, and their identification using a phylogenetic approach. Mycopathologia 163:31–39. https://doi.org/10.1007/s11046-006-0082-1
Article PubMed PubMed Central Google Scholar
Munkvold GP (2003) Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur J Plant Pathol 109:705–713
Munkvold GP, Desjardins AE (1997) Fumonisins in maize: can we reduce their occurrence? Plant Dis 81:556–565
Article CAS PubMed Google Scholar
Nankam C, Pataky JK (1996) Resistance to kernel infection by Fusarium moniliforme in the sweet corn inbred IL125b. Plant Dis 80:593–598
Paul C, Naidoo G, Forbes A, Mikkilineni V, White D, Rocheford T (2003) Quantitative trait loci for low aflatoxin production in two related populations. Theor Appl Genet 107:263–270. https://doi.org/10.1007/s00122-003-1241-0
Article CAS PubMed Google Scholar
Pérez-Brito S, Jeffers D, Gonzalez-De-Leon D, Khairallah M (2001) QTL mapping of Fusarium moniliforme ear rot resistance in highland maize in Mexico. Agrociencia 35:181–196
Piepho HP, Möhring (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881-1888. https://doi.org/10.1543/genetics.107.074229
Presello DA, Bott
Comments (0)