Repurposing the antimalarial chloroquine: a potential therapy for hepatic injury in a rat model of hindlimb ischemia–reperfusion by modulating apoptosis, autophagy, inflammation, and oxidative stress

Creager MA, Kaufman JA, Conte MS (2012) Clinical practice. Acute limb ischemia. N Engl J Med 366:2198–2206. https://doi.org/10.1056/NEJMcp1006054

Article  PubMed  Google Scholar 

Natarajan B, Patel P, Mukherjee A (2020) Acute lower limb ischemia-etiology, pathology, and management. Int J Angiol 29:168–174. https://doi.org/10.1055/s-0040-1713769

Article  PubMed  PubMed Central  Google Scholar 

Gökalp G, Eygi B, Kiray M, Açıkgöz B, Berksoy E, Bıcılıoğlu Y, Zengin N, İşcan S, Gökalp O, Gürbüz A (2020) How important is the damage to the liver after lower limb ischemia-reperfusion? An experimental study in a rat model. Turk Gogus Kalp Damar Cerrahisi Derg 28:127–133. https://doi.org/10.5606/tgkdc.dergisi.2020.18631

Article  PubMed  PubMed Central  Google Scholar 

Girnar GA, Mahajan HS (2021) Cerebral ischemic stroke and different approaches for treatment of stroke. FJPS 7:134. https://doi.org/10.1186/s43094-021-00289-1

Article  Google Scholar 

Ibrahim MAA, Elwan WM, Elgendy HA (2019) Role of scutellarin in ameliorating lung injury in a rat model of bilateral hind limb ischemia-reperfusion. Anat Rec (Hoboken) 302:2070–2081. https://doi.org/10.1002/ar.24175

Article  PubMed  Google Scholar 

Özbudak E, Eraldemir FC, Arıkan AA, Şahin D, Kır HM, Kurt T, Gülaştı OF, Yavuz S (2019) An evaluation of rivaroxaban and clopidogrel in a rat lower extremity ischemia-reperfusion model: an experimental study. Turk Gogus Kalp Damar Cerrahisi Derg 27:513–520. https://doi.org/10.5606/tgkdc.dergisi.2019.18061

Article  PubMed  PubMed Central  Google Scholar 

Kassab AA, Aboregela AM, Shalaby AM (2020) Edaravone attenuates lung injury in a hind limb ischemia-reperfusion rat model: a histological, immunohistochemical and biochemical study. Ann Anat 228:151433. https://doi.org/10.1016/j.aanat.2019.151433

Article  PubMed  Google Scholar 

Jaco I, Annibaldi A, Lalaoui N, Wilson R, Tenev T, Laurien L, Kim C, Jamal K, John SW, Liccardi G, Chau D, Murphy JM, Brumatti G, Feltham R, Pasparakis M, Silke J, Meier P (2017) MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol Cell 66:698-710.e5. https://doi.org/10.1016/j.molcel.2017.05.003

Article  PubMed  PubMed Central  Google Scholar 

Nie N, Bai C, Song S, Zhang Y, Wang B, Li Z (2020) Bifidobacterium plays a protective role in TNF-α-induced inflammatory response in Caco-2 cell through NF-κB and p38MAPK pathways. Mol Cell Biochem 464:83–91. https://doi.org/10.1007/s11010-019-03651-3

Article  PubMed  Google Scholar 

Millar MW, Fazal F, Rahman A (2022) Therapeutic targeting of NF-κB in acute lung injury: a double-edged sword. Cells 11:3317. https://doi.org/10.3390/cells11203317

Article  PubMed  PubMed Central  Google Scholar 

Li M, Ye J, Zhao G, Hong G, Hu X, Cao K, Wu Y, Lu Z (2019) Gas6 attenuates lipopolysaccharide-induced TNF-α expression and apoptosis in H9C2 cells through NF-κB and MAPK inhibition via the Axl/PI3K/Akt pathway. Int J Mol Med 44:982–994. https://doi.org/10.3892/ijmm.2019.4275

Article  PubMed  PubMed Central  Google Scholar 

Fang W, Cai SX, Wang CL, Sun XX, Li K, Yan XW, Sun YB, Sun XZ, Gu CK, Dai MY, Wang HM, Zhou Z (2017) Modulation of mitogen-activated protein kinase attenuates sepsis-induced acute lung injury in acute respiratory distress syndrome rats. Mol Med Rep 16:9652–9658. https://doi.org/10.3892/mmr.2017.7811

Article  PubMed  Google Scholar 

Rahman A, Anwar KN, Uddin S, Xu N, Ye RD, Platanias LC, Malik AB (2001) Protein kinase C-delta regulates thrombin-induced ICAM-1 gene expression in endothelial cells via activation of p38 mitogen-activated protein kinase. Mol Cell Biol 21:5554–5565. https://doi.org/10.1128/MCB.21.16.5554-5565.2001

Article  PubMed  PubMed Central  Google Scholar 

Deng RM, Zhou J (2024) Targeting NF-κB in hepatic ischemia-reperfusion alleviation: from signaling networks to therapeutic targeting. Mol Neurobiol 61:3409–3426. https://doi.org/10.1007/s12035-023-03787-w

Article  PubMed  Google Scholar 

Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Rev Apoptosis 13:1–9. https://doi.org/10.1007/s10495-007-0154-9

Article  Google Scholar 

Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Rev Nat Rev Drug Discov 16:273–284. https://doi.org/10.1038/nrd.2016.253

Article  PubMed  Google Scholar 

Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G (2020) Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol 11:42. https://doi.org/10.3389/fphar.2020.00042

Article  PubMed  PubMed Central  Google Scholar 

Kan C, Ungelenk L, Lupp A, Dirsch O, Dahmen U (2018) Ischemia-reperfusion injury in aged livers-the energy metabolism, inflammatory response, and autophagy. Transplantation 102:368–377. https://doi.org/10.1097/TP.0000000000001999

Article  PubMed  Google Scholar 

Cursio R, Colosetti P, Gugenheim J (2015) Autophagy and liver ischemia-reperfusion injury. Biomed Res Int 2015:417590. https://doi.org/10.1155/2015/417590

Article  PubMed  PubMed Central  Google Scholar 

Akpovwa H (2016) Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct 34:191–196. https://doi.org/10.1002/cbf.3182

Article  PubMed  PubMed Central  Google Scholar 

Goel P, Gerriets V (2024) Chloroquine. StatPearls Publishing, Treasure Island (FL)

Google Scholar 

Touret F, De Lamballerie X (2020) Of chloroquine and COVID-19. Rev Antiviral Res 177:104762. https://doi.org/10.1016/j.antiviral.2020.104762

Article  Google Scholar 

Devaux CA, Rolain JM, Colson P, Raoult D (2020) New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 55:105938. https://doi.org/10.1016/j.ijantimicag.2020.105938

Article  PubMed  PubMed Central  Google Scholar 

Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding WQ (2014) Chloroquine is a zinc ionophore. PLoS ONE 10:e109180. https://doi.org/10.1371/journal.pone.0109180

Article  Google Scholar 

Pawlik MW, Kwiecien S, Ptak-Belowska A, Pajdo R, Olszanecki R, Suski M, Madej J, Targosz A, Konturek SJ, Korbut R, Brzozowski T (2016) The renin-angiotensin system and its vasoactive metabolite angiotensin-(1–7) in the mechanism of the healing of preexisting gastric ulcers. The involvement of Mas receptors, nitric oxide, prostaglandins and proinflammatory cytokines. J Physiol Pharmacol 67:75–91

PubMed  Google Scholar 

Kang J, Albadawi H, Patel VI, Abbruzzese TA, Yoo JH, Austen WG Jr, Watkins MT (2008) Apolipoprotein E-/- mice have delayed skeletal muscle healing after hind limb ischemia-reperfusion. J Vasc Surg 48:701–708. https://doi.org/10.1016/j.jvs.2008.04.006

Article  PubMed  Google Scholar 

Caughlin S, Hepburn J, Liu Q, Wang L, Yeung KKC, Cechetto DF, Whitehead SN (2019) Chloroquine restores ganglioside homeostasis and improves pathological and behavioral outcomes post-stroke in the Rat. Mol Neurobiol 56:3552–3562. https://doi.org/10.1007/s12035-018-1317-0

Article  PubMed  Google Scholar 

Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

Article  PubMed  Google Scholar 

Montgomery HAC, Dymock JF (1961) The determination of nitrate in water. Analyst 86:414–416

Google Scholar 

Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54:356–361. https://doi.org/10.1136/jcp.54.5.356

Article  PubMed  PubMed Central  Google Scholar 

Camargo CA Jr, Madden JF, Gao W, Selvan RS, Clavien PA (1997) Interleukin-6 protects liver against warm ischemia/reperfusion injury and promotes hepatocyte proliferation in the rodent. Hepatology 26:1513–1520. https://doi.org/10.1002/hep.510260619

Article  PubMed  Google Scholar 

Jang CH, Choi JH, Byun MS, Jue DM (2006) Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford) 45:703–710.

Comments (0)

No login
gif