Creager MA, Kaufman JA, Conte MS (2012) Clinical practice. Acute limb ischemia. N Engl J Med 366:2198–2206. https://doi.org/10.1056/NEJMcp1006054
Natarajan B, Patel P, Mukherjee A (2020) Acute lower limb ischemia-etiology, pathology, and management. Int J Angiol 29:168–174. https://doi.org/10.1055/s-0040-1713769
Article PubMed PubMed Central Google Scholar
Gökalp G, Eygi B, Kiray M, Açıkgöz B, Berksoy E, Bıcılıoğlu Y, Zengin N, İşcan S, Gökalp O, Gürbüz A (2020) How important is the damage to the liver after lower limb ischemia-reperfusion? An experimental study in a rat model. Turk Gogus Kalp Damar Cerrahisi Derg 28:127–133. https://doi.org/10.5606/tgkdc.dergisi.2020.18631
Article PubMed PubMed Central Google Scholar
Girnar GA, Mahajan HS (2021) Cerebral ischemic stroke and different approaches for treatment of stroke. FJPS 7:134. https://doi.org/10.1186/s43094-021-00289-1
Ibrahim MAA, Elwan WM, Elgendy HA (2019) Role of scutellarin in ameliorating lung injury in a rat model of bilateral hind limb ischemia-reperfusion. Anat Rec (Hoboken) 302:2070–2081. https://doi.org/10.1002/ar.24175
Özbudak E, Eraldemir FC, Arıkan AA, Şahin D, Kır HM, Kurt T, Gülaştı OF, Yavuz S (2019) An evaluation of rivaroxaban and clopidogrel in a rat lower extremity ischemia-reperfusion model: an experimental study. Turk Gogus Kalp Damar Cerrahisi Derg 27:513–520. https://doi.org/10.5606/tgkdc.dergisi.2019.18061
Article PubMed PubMed Central Google Scholar
Kassab AA, Aboregela AM, Shalaby AM (2020) Edaravone attenuates lung injury in a hind limb ischemia-reperfusion rat model: a histological, immunohistochemical and biochemical study. Ann Anat 228:151433. https://doi.org/10.1016/j.aanat.2019.151433
Jaco I, Annibaldi A, Lalaoui N, Wilson R, Tenev T, Laurien L, Kim C, Jamal K, John SW, Liccardi G, Chau D, Murphy JM, Brumatti G, Feltham R, Pasparakis M, Silke J, Meier P (2017) MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol Cell 66:698-710.e5. https://doi.org/10.1016/j.molcel.2017.05.003
Article PubMed PubMed Central Google Scholar
Nie N, Bai C, Song S, Zhang Y, Wang B, Li Z (2020) Bifidobacterium plays a protective role in TNF-α-induced inflammatory response in Caco-2 cell through NF-κB and p38MAPK pathways. Mol Cell Biochem 464:83–91. https://doi.org/10.1007/s11010-019-03651-3
Millar MW, Fazal F, Rahman A (2022) Therapeutic targeting of NF-κB in acute lung injury: a double-edged sword. Cells 11:3317. https://doi.org/10.3390/cells11203317
Article PubMed PubMed Central Google Scholar
Li M, Ye J, Zhao G, Hong G, Hu X, Cao K, Wu Y, Lu Z (2019) Gas6 attenuates lipopolysaccharide-induced TNF-α expression and apoptosis in H9C2 cells through NF-κB and MAPK inhibition via the Axl/PI3K/Akt pathway. Int J Mol Med 44:982–994. https://doi.org/10.3892/ijmm.2019.4275
Article PubMed PubMed Central Google Scholar
Fang W, Cai SX, Wang CL, Sun XX, Li K, Yan XW, Sun YB, Sun XZ, Gu CK, Dai MY, Wang HM, Zhou Z (2017) Modulation of mitogen-activated protein kinase attenuates sepsis-induced acute lung injury in acute respiratory distress syndrome rats. Mol Med Rep 16:9652–9658. https://doi.org/10.3892/mmr.2017.7811
Rahman A, Anwar KN, Uddin S, Xu N, Ye RD, Platanias LC, Malik AB (2001) Protein kinase C-delta regulates thrombin-induced ICAM-1 gene expression in endothelial cells via activation of p38 mitogen-activated protein kinase. Mol Cell Biol 21:5554–5565. https://doi.org/10.1128/MCB.21.16.5554-5565.2001
Article PubMed PubMed Central Google Scholar
Deng RM, Zhou J (2024) Targeting NF-κB in hepatic ischemia-reperfusion alleviation: from signaling networks to therapeutic targeting. Mol Neurobiol 61:3409–3426. https://doi.org/10.1007/s12035-023-03787-w
Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Rev Apoptosis 13:1–9. https://doi.org/10.1007/s10495-007-0154-9
Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Rev Nat Rev Drug Discov 16:273–284. https://doi.org/10.1038/nrd.2016.253
Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G (2020) Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol 11:42. https://doi.org/10.3389/fphar.2020.00042
Article PubMed PubMed Central Google Scholar
Kan C, Ungelenk L, Lupp A, Dirsch O, Dahmen U (2018) Ischemia-reperfusion injury in aged livers-the energy metabolism, inflammatory response, and autophagy. Transplantation 102:368–377. https://doi.org/10.1097/TP.0000000000001999
Cursio R, Colosetti P, Gugenheim J (2015) Autophagy and liver ischemia-reperfusion injury. Biomed Res Int 2015:417590. https://doi.org/10.1155/2015/417590
Article PubMed PubMed Central Google Scholar
Akpovwa H (2016) Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct 34:191–196. https://doi.org/10.1002/cbf.3182
Article PubMed PubMed Central Google Scholar
Goel P, Gerriets V (2024) Chloroquine. StatPearls Publishing, Treasure Island (FL)
Touret F, De Lamballerie X (2020) Of chloroquine and COVID-19. Rev Antiviral Res 177:104762. https://doi.org/10.1016/j.antiviral.2020.104762
Devaux CA, Rolain JM, Colson P, Raoult D (2020) New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 55:105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
Article PubMed PubMed Central Google Scholar
Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding WQ (2014) Chloroquine is a zinc ionophore. PLoS ONE 10:e109180. https://doi.org/10.1371/journal.pone.0109180
Pawlik MW, Kwiecien S, Ptak-Belowska A, Pajdo R, Olszanecki R, Suski M, Madej J, Targosz A, Konturek SJ, Korbut R, Brzozowski T (2016) The renin-angiotensin system and its vasoactive metabolite angiotensin-(1–7) in the mechanism of the healing of preexisting gastric ulcers. The involvement of Mas receptors, nitric oxide, prostaglandins and proinflammatory cytokines. J Physiol Pharmacol 67:75–91
Kang J, Albadawi H, Patel VI, Abbruzzese TA, Yoo JH, Austen WG Jr, Watkins MT (2008) Apolipoprotein E-/- mice have delayed skeletal muscle healing after hind limb ischemia-reperfusion. J Vasc Surg 48:701–708. https://doi.org/10.1016/j.jvs.2008.04.006
Caughlin S, Hepburn J, Liu Q, Wang L, Yeung KKC, Cechetto DF, Whitehead SN (2019) Chloroquine restores ganglioside homeostasis and improves pathological and behavioral outcomes post-stroke in the Rat. Mol Neurobiol 56:3552–3562. https://doi.org/10.1007/s12035-018-1317-0
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3
Montgomery HAC, Dymock JF (1961) The determination of nitrate in water. Analyst 86:414–416
Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54:356–361. https://doi.org/10.1136/jcp.54.5.356
Article PubMed PubMed Central Google Scholar
Camargo CA Jr, Madden JF, Gao W, Selvan RS, Clavien PA (1997) Interleukin-6 protects liver against warm ischemia/reperfusion injury and promotes hepatocyte proliferation in the rodent. Hepatology 26:1513–1520. https://doi.org/10.1002/hep.510260619
Jang CH, Choi JH, Byun MS, Jue DM (2006) Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford) 45:703–710.
Comments (0)