Schöls L, Szymanski S, Peters S, et al. Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum Genet Aug. 2000;107(2):132–7. https://doi.org/10.1007/s004390000346.
Klockgether T. Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol Jan. 2010;9(1):94–104. https://doi.org/10.1016/S1474-4422(09)70305-9.
Abele M, Bürk K, Schöls L, et al. The aetiology of sporadic adult-onset ataxia. Brain May. 2002;125(5):961–8. https://doi.org/10.1093/brain/awf107.
Barbosa R, Lampreia T, Bugalho P. The aetiology of idiopathic late Onset Cerebellar Ataxia (ILOCA): clinical and imaging clues for a definitive diagnosis. J Neurol Sci Jun. 2016;15:365:156–7. https://doi.org/10.1016/j.jns.2016.04.029.
Kerber KA, Jen JC, Perlman S, Baloh RW. Late-onset pure cerebellar ataxia: differentiating those with and without identifiable mutations. J Neurol Sci Nov. 2005;15(1–2):41–5. https://doi.org/10.1016/j.jns.2005.06.006.
Cortese A, Simone R, Sullivan R, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet Apr. 2019;51(4):649–58. https://doi.org/10.1038/s41588-019-0372-4.
Pellerin D, Danzi MC, Wilke C, et al. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar Ataxia. N Engl J Med. Jan 2023;12(2):128–41. https://doi.org/10.1056/NEJMoa2207406.
Novis LE, Alavi S, Pellerin D, et al. Unraveling the genetic landscape of undiagnosed cerebellar ataxia in Brazilian patients. Parkinsonism Relat Disord Feb. 2024;119:105961. https://doi.org/10.1016/j.parkreldis.2023.105961.
Bogdan T, Wirth T, Iosif A, et al. Unravelling the etiology of sporadic late-onset cerebellar ataxia in a cohort of 205 patients: a prospective study. J Neurol Dec. 2022;269(12):6354–65. https://doi.org/10.1007/s00415-022-11253-1.
Barsottini OG, Albuquerque MV, Braga-Neto P, Pedroso JL. Adult onset sporadic ataxias: a diagnostic challenge. Arq Neuropsiquiatr Mar. 2014;72(3):232–40. https://doi.org/10.1590/0004-282x20130242.
Harding AE. Idiopathic late onset cerebellar ataxia. A clinical and genetic study of 36 cases. J Neurol Sci Aug. 1981;51(2):259–71. https://doi.org/10.1016/0022-510x(81)90104-0.
Klockgether T. Sporadic adult-onset ataxia. Handb Clin Neurol. 2018;155:217–25. https://doi.org/10.1016/B978-0-444-64189-2.00014-7.
Polo JM, Calleja J, Combarros O, Berciano J. Hereditary ataxias and paraplegias in Cantabria, Spain. An epidemiological and clinical study. Brain Apr. 1991;114(Pt 2):855–66. https://doi.org/10.1093/brain/114.2.855.
Leone M, Bottacchi E, D’Alessandro G, Kustermann S. Hereditary ataxias and paraplegias in Valle d’Aosta, Italy: a study of prevalence and disability. Acta Neurol Scand Mar. 1995;91(3):183–7. https://doi.org/10.1111/j.1600-0404.1995.tb00430.x.
Tsuji S, Onodera O, Goto J, Nishizawa M, Diseases SGA. Sporadic ataxias in Japan–a population-based epidemiological study. Cerebellum. 2008;7(2):189–97. https://doi.org/10.1007/s12311-008-0028-x.
Article CAS PubMed Google Scholar
Muzaimi MB, Thomas J, Palmer-Smith S, et al. Population based study of late onset cerebellar ataxia in South East Wales. J Neurol Neurosurg Psychiatry Aug. 2004;75(8):1129–34. https://doi.org/10.1136/jnnp.2003.014662.
Giordano I, Harmuth F, Jacobi H, et al. Clinical and genetic characteristics of sporadic adult-onset degenerative ataxia. Neurol Sep. 2017;05(10):1043–9. https://doi.org/10.1212/WNL.0000000000004311.
Yoshida K, Kuwabara S, Nakamura K, et al. Idiopathic cerebellar ataxia (IDCA): diagnostic criteria and clinical analyses of 63 Japanese patients. J Neurol Sci Jan. 2018;15:384:30–5. https://doi.org/10.1016/j.jns.2017.11.008.
van Gaalen J, van de Warrenburg BP. A practical approach to late-onset cerebellar ataxia: putting the disorder with lack of order into order. Pract Neurol Feb. 2012;12(1):14–24. https://doi.org/10.1136/practneurol-2011-000108.
Dade M, Berzero G, Izquierdo C, et al. Neurological syndromes Associated with Anti-GAD antibodies. Int J Mol Sci May. 2020;24(10). https://doi.org/10.3390/ijms21103701.
Garza M, Piquet AL. Update in Autoimmune Movement disorders: newly described Antigen targets in Autoimmune and Paraneoplastic Cerebellar Ataxia. Front Neurol. 2021;12:683048. https://doi.org/10.3389/fneur.2021.683048.
Article PubMed PubMed Central Google Scholar
Barbouch I, Ali Kako A, Mebrouk Y. Comprehensive evaluation of sporadic late-onset cerebellar ataxias: clinical presentation, Diagnostic challenges, and treatment outcomes. Cureus Jun. 2024;16(6):e62667. https://doi.org/10.7759/cureus.62667.
Baizabal-Carvallo JF, Alonso-Juarez M. Cerebellar disease associated with anti-glutamic acid decarboxylase antibodies: review. J Neural Transm (Vienna) Oct. 2017;124(10):1171–82. https://doi.org/10.1007/s00702-017-1754-3.
Smail C, Ge B, Keever-Keigher MR, et al. Complex trait associations in rare diseases and impacts on mendelian variant interpretation. Nat Commun Sep. 2024;18(1):8196. https://doi.org/10.1038/s41467-024-52407-1.
Barbier M, Davoine CS, Petit E et al. Feb. Intermediate repeat expansions of TBP and STUB1: genetic modifier or pure digenic inheritance in spinocerebellar ataxias? Genet Med. 2023;25(2):100327. https://doi.org/10.1016/j.gim.2022.10.009
Genome sequence analyses identify novel risk loci for multiple system atrophy, Chia R, Ray A, Shah Z, et al. Neuron. 2024;112(13):2142–e21565.
Novis LE, Spitz M, Jardim M, Raskin S, Teive HAG. Evidence and practices of the use of next generation sequencing in patients with undiagnosed autosomal dominant cerebellar ataxias: a review. Arq Neuropsiquiatr Sep. 2020;78(9):576–85. https://doi.org/10.1590/0004-282x20200017.
Alazami AM, Patel N, Shamseldin HE, et al. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep Jan. 2015;13(2):148–61. https://doi.org/10.1016/j.celrep.2014.12.015.
Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, et al. Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain Nov. 2017;01(11):2860–78. https://doi.org/10.1093/brain/awx251.
Lelieveld SH, Spielmann M, Mundlos S, Veltman JA, Gilissen C. Comparison of exome and Genome Sequencing Technologies for the Complete capture of protein-coding regions. Hum Mutat Aug. 2015;36(8):815–22. https://doi.org/10.1002/humu.22813.
Belkadi A, Bolze A, Itan Y, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S Apr. 2015;28(17):5473–8. https://doi.org/10.1073/pnas.1418631112.
Cabal-Herrera AM, Tassanakijpanich N, Salcedo-Arellano MJ, Hagerman RJ. Fragile X-Associated Tremor/Ataxia syndrome (FXTAS): pathophysiology and clinical implications. Int J Mol Sci Jun. 2020;20(12). https://doi.org/10.3390/ijms21124391.
Dolzhenko E, van Vugt JJFA, Shaw RJ, et al. Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res Nov. 2017;27(11):1895–903. https://doi.org/10.1101/gr.225672.117.
Rudaks LI, Yeow D, Ng K, Deveson IW, Kennerson ML, Kumar KR. An update on the adult-Onset Hereditary Cerebellar Ataxias: Novel Genetic causes and New Diagnostic approaches. Cerebellum May. 2024;18. https://doi.org/10.1007/s12311-024-01703-z.
Coarelli G, Wirth T, Tranchant C, Koenig M, Durr A, Anheim M. The inherited cerebellar ataxias: an update. J Neurol Jan. 2023;270(1):208–22. https://doi.org/10.1007/s00415-022-11383-6.
Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42(3):174–83. https://doi.org/10.1159/000358801.
Sasaki H, Yabe I, Tashiro K. The hereditary spinocerebellar ataxias in Japan. Cytogenet Genome Res. 2003;100(1–4):198–205. https://doi.org/10.1159/000072855.
Comments (0)