Asa SL, Casar-Borota O, Chanson P, Delgrange E, Earls P, Ezzat S et al (2017) From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an international pituitary pathology club proposal. Endocr Relat Cancer 24(4):C5–C8. https://doi.org/10.1530/ERC-17-0004
Article CAS PubMed Google Scholar
Di Ieva A, Rotondo F, Syro LV, Cusimano MD, Kovacs K (2014) Aggressive pituitary adenomas–diagnosis and emerging treatments. Nat Rev Endocrinol 10(7):423–435. https://doi.org/10.1038/nrendo.2014.64
Article CAS PubMed Google Scholar
Raverot G, Burman P, McCormack A, Heaney A, Petersenn S, Popovic V et al (2018) European society of endocrinology clinical practice guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol 178(1):G1–G24. https://doi.org/10.1530/EJE-17-0796
Article CAS PubMed Google Scholar
Raverot G, Ilie MD, Lasolle H, Amodru V, Trouillas J, Castinetti F et al (2021) Aggressive pituitary tumours and pituitary carcinomas. Nat Rev Endocrinol 17(11):671–684. https://doi.org/10.1038/s41574-021-00550-w
Esseltine JL, Laird DW (2016) Next-generation connexin and pannexin cell biology. Trends Cell Biol 26(12):944–955. https://doi.org/10.1016/j.tcb.2016.06.003
Article CAS PubMed Google Scholar
Deng Z, He Z, Maksaev G, Bitter RM, Rau M, Fitzpatrick JAJ et al (2020) Cryo-EM structures of the ATP release channel pannexin 1. Nat Struct Mol Biol 27(4):373–381. https://doi.org/10.1038/s41594-020-0401-0
Article CAS PubMed Google Scholar
Cruz De Los Santos M, Lundqvist A (2023) Pannexin 1 regulates CD8(+) T cell function and memory formation. Nat Rev Immunol 23(8):478. https://doi.org/10.1038/s41577-023-00913-6
Article CAS PubMed Google Scholar
Ruan Z, Orozco IJ, Du J, Lu W (2020) Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature 584(7822):646–651. https://doi.org/10.1038/s41586-020-2357-y
Article CAS PubMed PubMed Central Google Scholar
Lai C, Bechberger J, Thompson R, MacVicar B, Bruzzone R, Naus C (2007) Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res 67(4):1545–1554. https://doi.org/10.1158/0008-5472.Can-06-1396
Article CAS PubMed Google Scholar
Penuela S, Gyenis L, Ablack A, Churko J, Berger A, Litchfield D et al (2012) Loss of pannexin 1 attenuates melanoma progression by reversion to a melanocytic phenotype. J Biol Chem 287(34):29184–29193. https://doi.org/10.1074/jbc.M112.377176
Article CAS PubMed PubMed Central Google Scholar
MacVicar B, Thompson R (2010) Non-junction functions of pannexin-1 channels. Trends Neurosci 33(2):93–102. https://doi.org/10.1016/j.tins.2009.11.007
Article CAS PubMed Google Scholar
Zemkova H, Stojilkovic SS (2018) Neurotransmitter receptors as signaling platforms in anterior pituitary cells. Mol Cell Endocrinol 463:49–64. https://doi.org/10.1016/j.mce.2017.07.003
Article CAS PubMed Google Scholar
Stojilkovic SS, Koshimizu T (2001) Signaling by extracellular nucleotides in anterior pituitary cells. Trends Endocrinol Metab 12(5):218–225. https://doi.org/10.1016/s1043-2760(01)00387-3
Article CAS PubMed Google Scholar
Li S, Bjelobaba I, Yan Z, Kucka M, Tomic M, Stojilkovic SS (2011) Expression and roles of pannexins in ATP release in the pituitary gland. Endocrinology 152(6):2342–2352. https://doi.org/10.1210/en.2010-1216
Article CAS PubMed PubMed Central Google Scholar
Claudino Dos Santos JC, Lima MPP, Brito GAC, Viana GSB (2023) Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis. Ageing Res Rev 84:101812. https://doi.org/10.1016/j.arr.2022.101812
Article CAS PubMed Google Scholar
Dossi E, Blauwblomme T, Moulard J, Chever O, Vasile F, Guinard E et al (2018) Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy. Sci Transl Med 10(443). https://doi.org/10.1126/scitranslmed.aar3796
Seo JH, Dalal MS, Calderon F, Contreras JE (2020) Myeloid Pannexin-1 mediates acute leukocyte infiltration and leads to worse outcomes after brain trauma. J Neuroinflammation 17(1):245. https://doi.org/10.1186/s12974-020-01917-y
Article CAS PubMed PubMed Central Google Scholar
Sanchez-Arias JC, van der Slagt E, Vecchiarelli HA, Candlish RC, York N, Young PA et al (2021) Purinergic signaling in nervous system health and disease: focus on pannexin 1. Pharmacol Ther 225:107840. https://doi.org/10.1016/j.pharmthera.2021.107840
Article CAS PubMed Google Scholar
Li S, Bjelobaba I, Yan Z, Kucka M, Tomic M, Stojilkovic S (2011) Expression and roles of pannexins in ATP release in the pituitary gland. Endocrinology 152(6):2342–2352. https://doi.org/10.1210/en.2010-1216
Article CAS PubMed PubMed Central Google Scholar
Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P et al (2019) A selective BCL-X(L) PROTAC degrader achieves safe and potent antitumor activity. Nat Med 25(12):1938–1947. https://doi.org/10.1038/s41591-019-0668-z
Article CAS PubMed PubMed Central Google Scholar
Wei M, Zhang G, Huang Z, Ding X, Sun Q, Zhang Y et al (2023) ATP-P2X(7)R-mediated microglia senescence aggravates retinal ganglion cell injury in chronic ocular hypertension. J Neuroinflammation 20(1):180. https://doi.org/10.1186/s12974-023-02855-1
Article CAS PubMed PubMed Central Google Scholar
Martire A, Pepponi R, Liguori F, Volonte C, Popoli P (2020) P2X7 receptor agonist 2‘(3’)-O-(4-Benzoylbenzoyl)ATP differently modulates cell viability and corticostriatal synaptic transmission in experimental models of Huntington’s disease. Front Pharmacol 11:633861. https://doi.org/10.3389/fphar.2020.633861
Article CAS PubMed Google Scholar
Flores-Munoz C, Maripillan J, Vasquez-Navarrete J, Novoa-Molina J, Ceriani R, Sanchez HA et al (2021) Restraint of Human skin fibroblast motility, migration, and cell surface actin dynamics, by Pannexin 1 and P2X7 receptor signaling. Int J Mol Sci 22(3). https://doi.org/10.3390/ijms22031069
Bao BA, Lai CP, Naus CC, Morgan JR (2012) Pannexin1 drives multicellular aggregate compaction via a signaling cascade that remodels the actin cytoskeleton. J Biol Chem 287(11):8407–8416. https://doi.org/10.1074/jbc.M111.306522
Article CAS PubMed PubMed Central Google Scholar
Velez-Ortega AC, Stepanyan R, Edelmann SE, Torres-Gallego S, Park C, Marinkova DA et al (2023) TRPA1 activation in non-sensory supporting cells contributes to regulation of cochlear sensitivity after acoustic trauma. Nat Commun 14(1):3871. https://doi.org/10.1038/s41467-023-39589-w
Article CAS PubMed PubMed Central Google Scholar
Tan Z, Liu Y, Xi W, Lou HF, Zhu L, Guo Z et al (2017) Glia-derived ATP inversely regulates excitability of pyramidal and CCK-positive neurons. Nat Commun 8:13772. https://doi.org/10.1038/ncomms13772
Article CAS PubMed PubMed Central Google Scholar
Bonvini SJ, Birrell MA, Dubuis E, Adcock JJ, Wortley MA, Flajolet P et al (2020) Novel airway smooth muscle-mast cell interactions and a role for the TRPV4-ATP axis in non-atopic asthma. Eur Respir J 56(1). https://doi.org/10.1183/13993003.01458-2019
Oikawa K, Imai T, Thagun C, Toyooka K, Yoshizumi T, Ishikawa K et al (2021) Mitochondrial movement during its association with chloroplasts in Arabidopsis thaliana. Commun Biol 4(1):292. https://doi.org/10.1038/s42003-021-01833-8
Article CAS PubMed PubMed Central Google Scholar
Pooja S, Pushpanathan M, Gunasekaran P, Rajendhran J (2015) Endocytosis–mediated Invasion and pathogenicity of Streptococcus agalactiae in rat cardiomyocyte (H9C2). PLoS ONE 10(10):e0139733. https://doi.org/10.1371/journal.pone.0139733
Comments (0)