Pannexin-1 regulation of ATP release promotes the invasion of pituitary adenoma

Asa SL, Casar-Borota O, Chanson P, Delgrange E, Earls P, Ezzat S et al (2017) From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an international pituitary pathology club proposal. Endocr Relat Cancer 24(4):C5–C8. https://doi.org/10.1530/ERC-17-0004

Article  CAS  PubMed  Google Scholar 

Di Ieva A, Rotondo F, Syro LV, Cusimano MD, Kovacs K (2014) Aggressive pituitary adenomas–diagnosis and emerging treatments. Nat Rev Endocrinol 10(7):423–435. https://doi.org/10.1038/nrendo.2014.64

Article  CAS  PubMed  Google Scholar 

Raverot G, Burman P, McCormack A, Heaney A, Petersenn S, Popovic V et al (2018) European society of endocrinology clinical practice guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol 178(1):G1–G24. https://doi.org/10.1530/EJE-17-0796

Article  CAS  PubMed  Google Scholar 

Raverot G, Ilie MD, Lasolle H, Amodru V, Trouillas J, Castinetti F et al (2021) Aggressive pituitary tumours and pituitary carcinomas. Nat Rev Endocrinol 17(11):671–684. https://doi.org/10.1038/s41574-021-00550-w

Article  PubMed  Google Scholar 

Esseltine JL, Laird DW (2016) Next-generation connexin and pannexin cell biology. Trends Cell Biol 26(12):944–955. https://doi.org/10.1016/j.tcb.2016.06.003

Article  CAS  PubMed  Google Scholar 

Deng Z, He Z, Maksaev G, Bitter RM, Rau M, Fitzpatrick JAJ et al (2020) Cryo-EM structures of the ATP release channel pannexin 1. Nat Struct Mol Biol 27(4):373–381. https://doi.org/10.1038/s41594-020-0401-0

Article  CAS  PubMed  Google Scholar 

Cruz De Los Santos M, Lundqvist A (2023) Pannexin 1 regulates CD8(+) T cell function and memory formation. Nat Rev Immunol 23(8):478. https://doi.org/10.1038/s41577-023-00913-6

Article  CAS  PubMed  Google Scholar 

Ruan Z, Orozco IJ, Du J, Lu W (2020) Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature 584(7822):646–651. https://doi.org/10.1038/s41586-020-2357-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai C, Bechberger J, Thompson R, MacVicar B, Bruzzone R, Naus C (2007) Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res 67(4):1545–1554. https://doi.org/10.1158/0008-5472.Can-06-1396

Article  CAS  PubMed  Google Scholar 

Penuela S, Gyenis L, Ablack A, Churko J, Berger A, Litchfield D et al (2012) Loss of pannexin 1 attenuates melanoma progression by reversion to a melanocytic phenotype. J Biol Chem 287(34):29184–29193. https://doi.org/10.1074/jbc.M112.377176

Article  CAS  PubMed  PubMed Central  Google Scholar 

MacVicar B, Thompson R (2010) Non-junction functions of pannexin-1 channels. Trends Neurosci 33(2):93–102. https://doi.org/10.1016/j.tins.2009.11.007

Article  CAS  PubMed  Google Scholar 

Zemkova H, Stojilkovic SS (2018) Neurotransmitter receptors as signaling platforms in anterior pituitary cells. Mol Cell Endocrinol 463:49–64. https://doi.org/10.1016/j.mce.2017.07.003

Article  CAS  PubMed  Google Scholar 

Stojilkovic SS, Koshimizu T (2001) Signaling by extracellular nucleotides in anterior pituitary cells. Trends Endocrinol Metab 12(5):218–225. https://doi.org/10.1016/s1043-2760(01)00387-3

Article  CAS  PubMed  Google Scholar 

Li S, Bjelobaba I, Yan Z, Kucka M, Tomic M, Stojilkovic SS (2011) Expression and roles of pannexins in ATP release in the pituitary gland. Endocrinology 152(6):2342–2352. https://doi.org/10.1210/en.2010-1216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Claudino Dos Santos JC, Lima MPP, Brito GAC, Viana GSB (2023) Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis. Ageing Res Rev 84:101812. https://doi.org/10.1016/j.arr.2022.101812

Article  CAS  PubMed  Google Scholar 

Dossi E, Blauwblomme T, Moulard J, Chever O, Vasile F, Guinard E et al (2018) Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy. Sci Transl Med 10(443). https://doi.org/10.1126/scitranslmed.aar3796

Seo JH, Dalal MS, Calderon F, Contreras JE (2020) Myeloid Pannexin-1 mediates acute leukocyte infiltration and leads to worse outcomes after brain trauma. J Neuroinflammation 17(1):245. https://doi.org/10.1186/s12974-020-01917-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanchez-Arias JC, van der Slagt E, Vecchiarelli HA, Candlish RC, York N, Young PA et al (2021) Purinergic signaling in nervous system health and disease: focus on pannexin 1. Pharmacol Ther 225:107840. https://doi.org/10.1016/j.pharmthera.2021.107840

Article  CAS  PubMed  Google Scholar 

Li S, Bjelobaba I, Yan Z, Kucka M, Tomic M, Stojilkovic S (2011) Expression and roles of pannexins in ATP release in the pituitary gland. Endocrinology 152(6):2342–2352. https://doi.org/10.1210/en.2010-1216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P et al (2019) A selective BCL-X(L) PROTAC degrader achieves safe and potent antitumor activity. Nat Med 25(12):1938–1947. https://doi.org/10.1038/s41591-019-0668-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei M, Zhang G, Huang Z, Ding X, Sun Q, Zhang Y et al (2023) ATP-P2X(7)R-mediated microglia senescence aggravates retinal ganglion cell injury in chronic ocular hypertension. J Neuroinflammation 20(1):180. https://doi.org/10.1186/s12974-023-02855-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martire A, Pepponi R, Liguori F, Volonte C, Popoli P (2020) P2X7 receptor agonist 2‘(3’)-O-(4-Benzoylbenzoyl)ATP differently modulates cell viability and corticostriatal synaptic transmission in experimental models of Huntington’s disease. Front Pharmacol 11:633861. https://doi.org/10.3389/fphar.2020.633861

Article  CAS  PubMed  Google Scholar 

Flores-Munoz C, Maripillan J, Vasquez-Navarrete J, Novoa-Molina J, Ceriani R, Sanchez HA et al (2021) Restraint of Human skin fibroblast motility, migration, and cell surface actin dynamics, by Pannexin 1 and P2X7 receptor signaling. Int J Mol Sci 22(3). https://doi.org/10.3390/ijms22031069

Bao BA, Lai CP, Naus CC, Morgan JR (2012) Pannexin1 drives multicellular aggregate compaction via a signaling cascade that remodels the actin cytoskeleton. J Biol Chem 287(11):8407–8416. https://doi.org/10.1074/jbc.M111.306522

Article  CAS  PubMed  PubMed Central  Google Scholar 

Velez-Ortega AC, Stepanyan R, Edelmann SE, Torres-Gallego S, Park C, Marinkova DA et al (2023) TRPA1 activation in non-sensory supporting cells contributes to regulation of cochlear sensitivity after acoustic trauma. Nat Commun 14(1):3871. https://doi.org/10.1038/s41467-023-39589-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan Z, Liu Y, Xi W, Lou HF, Zhu L, Guo Z et al (2017) Glia-derived ATP inversely regulates excitability of pyramidal and CCK-positive neurons. Nat Commun 8:13772. https://doi.org/10.1038/ncomms13772

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonvini SJ, Birrell MA, Dubuis E, Adcock JJ, Wortley MA, Flajolet P et al (2020) Novel airway smooth muscle-mast cell interactions and a role for the TRPV4-ATP axis in non-atopic asthma. Eur Respir J 56(1). https://doi.org/10.1183/13993003.01458-2019

Oikawa K, Imai T, Thagun C, Toyooka K, Yoshizumi T, Ishikawa K et al (2021) Mitochondrial movement during its association with chloroplasts in Arabidopsis thaliana. Commun Biol 4(1):292. https://doi.org/10.1038/s42003-021-01833-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pooja S, Pushpanathan M, Gunasekaran P, Rajendhran J (2015) Endocytosis–mediated Invasion and pathogenicity of Streptococcus agalactiae in rat cardiomyocyte (H9C2). PLoS ONE 10(10):e0139733. https://doi.org/10.1371/journal.pone.0139733

Comments (0)

No login
gif