Ahmed IM, Nadira UA, Qiu CW, Cao F, Chen ZH, Vincze E, Wu F (2020) The barley S-adenosylmethionine synthetase 3 gene HvSAMS3 positively regulates the tolerance to combined drought and salinity stress in Tibetan wild barley. Cells 9(6):1530
Article CAS PubMed PubMed Central Google Scholar
Akash, Srivastava R, Kumar R (2022) VIGS-based gene silencing for assessing mineral nutrient acquisition. In: Mysore KS, Senthil-Kumar M (eds) Plant gene silencing: methods and protocols. Springer US, New York, NY, pp 165–179
Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:1–11
Altieri MA, Nicholls CI (2017) The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim Change 140:33–45
Aragonés V, Aliaga F, Pasin F, Daròs JA (2022) Simplifying plant gene silencing and genome editing logistics by a one-Agrobacterium system for simultaneous delivery of multipartite virus vectors. Biotechnol J 17(7):2100504
Barciszewska-Pacak M, Jarmołowski A, Pacak A (2016) Virus-induced gene silencing for gene function studies in barley. Environ Responses Plants: Methods Protocols 1398:293–308
Begna T (2020) Effects of drought stress on crop production and productivity. Int J Res Stud Agricultural Sci 6(9):34–43
Bekele D, Tesfaye K, Fikre A (2019) Applications of virus induced gene silencing (VIGS) in plant functional genomics studies. J Plant Biochem Physiol 7(1):1–7
Bouard W, Houde M (2022) The C2H2 zinc finger protein TaZFP13D increases drought stress tolerance in wheat. Plant Stress 6:10011
Broderick SR, Chapin LJ, Jones ML (2020) Virus-induced gene silencing for functional analysis of flower traits in petunia. Virus-Induced Gene Silencing Plants: Methods Protocols 2172:199–222
Bruun-Rasmussen M, Madsen CT, Jessing S, Albrechtsen M (2007) Stability of barley stripe mosaic virus–induced gene silencing in barley. Mol Plant Microbe Interact 20(11):1323–1331
Article CAS PubMed Google Scholar
Burch-Smith TM, Anderson JC, Martin GB, Dinesh‐Kumar SP (2004) Applications and advantages of virus‐induced gene silencing for gene function studies in plants. Plant J 39(5):734–746
Article CAS PubMed Google Scholar
Chang H, Wu T, Shalmani A, Xu L, Li C, Zhang W, Pan R (2024) Heat shock protein HvHSP16. 9 from wild barley enhances tolerance to salt stress. Physiol Mol Biology Plants 30:1–18
Chen L, Meng Y, Yang W, Qian LV, Zhou L, Liu S, Li X (2023a) Genome-wide analysis and identification of TaRING-H2 gene family and TaSDIR1 positively regulates salt stress tolerance in wheat. Int J Biol Macromol 242:125162
Article CAS PubMed Google Scholar
Chen L, Yang W, Liu S, Meng Y, Zhu Z, Liang R, Li X (2023b) Genome-wide analysis and identification of light-harvesting chlorophyll a/b binding (LHC) gene family and BSMV-VIGS silencing TaLHC86 reduced salt tolerance in wheat. Int J Biol Macromol 242:124930
Article CAS PubMed Google Scholar
Cui Y, Jiang J, Yang H, Zhao T, Xu X, Li J (2018) Virus-induced gene silencing (VIGS) of the NBS-LRR gene SLNLC1 compromises Sm-mediated disease resistance to Stemphylium Lycopersici in tomato. Biochem Biophys Res Commun 503(3):1524–1529
Article CAS PubMed Google Scholar
Dhariwal GK, Dhariwal R, Frick M, Laroche A (2022) Virus induced gene silencing: a tool to study gene function in wheat. In: Wani SH, Kumar A (eds) Genomics of cereal crops. Springer US, New York, NY, pp 107–155
Ding XS, Schneider WL, Chaluvadi SR, Mian MR, Nelson RS (2006) Characterization of a brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant Microbe Interact 19(11):1229–1239
Article CAS PubMed Google Scholar
Feng X, Liu W, Qiu CW, Zeng F, Wang Y, Zhang G, Wu F (2020) HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H + homoeostasis. Plant Biotechnol J 18(8):1683–1696
Article CAS PubMed PubMed Central Google Scholar
Gao H, Gadlage MJ, Lafitte HR, Lenderts B, Yang M, Schroder M, Meeley RB (2020) Superior field performance of waxy corn engineered using CRISPR–Cas9. Nat Biotechnol 38(5):579–581
Article CAS PubMed Google Scholar
Gao PF, Xi FH, Zhang ZY, Hu KQ, Chen K, Wei WT, Ding JZ, Gu LF (2021) Research progress of plant vigs technology and its application in forestry science. Biotechnology Bulletin 37(5):141
Ge M, Tang Y, Guan Y, Lv M, Zhou C, Ma H, Lv J (2024) TaWRKY31, a novel WRKY transcription factor in wheat, participates in regulation of plant drought stress tolerance. BMC Plant Biol 24(1):27
Article CAS PubMed PubMed Central Google Scholar
Goyal A, Lakra N, Soni A, Kumari A, Munjal R (2023) Functional genomics approaches for combating the abiotic stresses in wheat. In: Kamran Khan M, Pandey A, Hamurcu M, Prakash Gupta O, Gezgin S (eds) Abiotic stresses in wheat. Academic, pp 209–232
Grønlund M, Olsen A, Johansen EI, Jakobsen I (2010) Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum. Plant Methods 6:1–8
Gunupuru LR, Perochon A, Ali SS, Scofield SR, Doohan FM (2019) Virus-induced gene silencing (VIGS) for functional characterization of disease resistance genes in barley seedlings. Barley: Methods Protocols 1900:95–114
Guo J, Yang Y, Wang T, Wang Y, Zhang X, Min D, Zhang X (2023) Analysis of raffinose synthase gene family in bread wheat and identification of drought resistance and salt tolerance function of TaRS15-3B. Int J Mol Sci 24(13):11185
Article CAS PubMed PubMed Central Google Scholar
Han Y, Yin S, Huang L, Wu X, Zeng J, Liu X, Zhang G (2018) A sodium transporter HvHKT1; 1 confers salt tolerance in barley via regulating tissue and cell ion homeostasis. Plant Cell Physiol 59(10):1976–1989
Article CAS PubMed Google Scholar
Hay JM, Jones MC, Blakebrough ML, Dasgupta I, Davies JW, Hull R (1991) An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucleic Acids Res 19(10):2615–2621
Article CAS PubMed PubMed Central Google Scholar
He X, Zeng J, Cao F, Ahmed IM, Zhang G, Vincze E, Wu F (2015) HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot 66(22):7405–7419
Article CAS PubMed PubMed Central Google Scholar
Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30(3):315–327
Article CAS PubMed Google Scholar
Hu D, Guo Q, Zhang Y, Chen F (2023) Maize methionine sulfoxide reductase genes ZmMSRA2 and ZmMSRA5. 1 involved in the tolerance to osmotic or salinity stress in Arabidopsis and maize. Plant Mol Biology Report 41(1):118–133
Huang X, Amee M, Chen L (2021) Bermudagrass CdWRKY50 gene negatively regulates plants’ response to salt stress. Environ Exp Bot 188:104513
Huang Q, Lin B, Cao Y, Zhang Y, Song H, Huang C, Zhuo K (2023) CRISPR/Cas9-mediated mutagenesis of the susceptibility gene OsHPP04 in rice confers enhanced resistance to rice root-knot nematode. Front Plant Sci 14:1134653
Article PubMed PubMed Central Google Scholar
Jin X, Zheng Y, Wang J, Chen W, Yang Z, Chen Y, Sun B (2023) SbNAC9 improves drought tolerance by enhancing scavenging ability of reactive oxygen species and activating stress-responsive genes of sorghum. Int J Mol Sci 24(3):2401
Article CAS PubMed PubMed Central Google Scholar
Kernodle B (2022) The development, optimization, and application of foxtail mosaic virus as a viral expression vector. Doctoral dissertation, Iowa State University
Kim M, Hwang Y, Lim S, Jang HK, Kim HO (2024) Advances in nanoparticles as non-viral vectors for efficient delivery of CRISPR/Cas9. Pharmaceutics 16(9):1197
Article PubMed PubMed Central Google Scholar
Lacomme C (2015) Strategies for altering plant traits using virus-induced gene silencing technologies. In: Mysore KS, Senthil-Kumar M (eds) Plant gene silencing. Methods in molecular biology, vol. 1287. Humana Press, New York, NY
Lee WS, Hammond-Kosack KE, Kanyuka K (2012) Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: virus-induced gene silencing, host-mediated gene silencing, and virus-mediated overexpression of heterologous protein. Plant Physiol 160(2):582–590
Article CAS PubMed PubMed Central Google Scholar
Leonetti P, Stuttmann J, Pantaleo V (2021) Regulation of plant antiviral defense genes via host RNA-silencing mechanisms. Virol J 18:1–10
Li J, Zhu L, Hull JJ, Liang S, Daniell H, Jin S, Zhang X (2016) Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnol J 14(10):1956–1975
Comments (0)