Epigenetic modification mediated by PHF20/METTL14/HOXA13 signaling axis modulates osteogenic differentiation of mesenchymal stem cells

Adithya SP, Balagangadharan K, Selvamurugan N (2022) Epigenetic modifications of histones during osteoblast differentiation. Biochim Biophys Acta Gene Regul Mech 1865:194780. https://doi.org/10.1016/j.bbagrm.2021.194780

Article  PubMed  CAS  Google Scholar 

Badeaux AI, Yang Y, Cardenas K et al (2012) Loss of the methyl lysine effector protein PHF20 impacts the expression of genes regulated by the lysine acetyltransferase MOF. J Biol Chem 287:429–437. https://doi.org/10.1074/jbc.M111.271163

Article  PubMed  CAS  Google Scholar 

Chen X, Xu M, Xu X et al (2020) METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer 19:106. https://doi.org/10.1186/s12943-020-01220-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen Z, Zhong S, Zhang Z, Tang J (2023) PHF20 is a Novel Prognostic Biomarker and correlated with Immune Status in breast Cancer. Biochem Genet 61:1369–1386. https://doi.org/10.1007/s10528-022-10321-5

Article  PubMed  CAS  Google Scholar 

Cheng C, Zhang H, Zheng J et al (2021) METTL14 benefits the mesenchymal stem cells in patients with steroid-associated osteonecrosis of the femoral head by regulating the m6A level of PTPN6. Aging 13:25903–25919. https://doi.org/10.18632/aging.203778

Article  PubMed  PubMed Central  CAS  Google Scholar 

Deng M, Luo J, Cao H et al (2023) METTL14 represses osteoclast formation to ameliorate osteoporosis via enhancing GPX4 mRNA stability. Environ Toxicol 38:2057–2068. https://doi.org/10.1002/tox.23829

Article  PubMed  CAS  Google Scholar 

Fu G, Ren A, Qiu Y, Zhang Y (2016) Epigenetic regulation of osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther 11:235–246. https://doi.org/10.2174/1574888x10666150528153313

Article  PubMed  CAS  Google Scholar 

Huang C, Wang Y (2022) Downregulation of METTL14 improves postmenopausal osteoporosis via IGF2BP1 dependent posttranscriptional silencing of SMAD1. Cell Death Dis 13:919. https://doi.org/10.1038/s41419-022-05362-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huang Y, Zhang H, Wang L et al (2020) JMJD3 acts in tandem with KLF4 to facilitate reprogramming to pluripotency. Nat Commun 11:5061. https://doi.org/10.1038/s41467-020-18900-z

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jiang X, Liu B, Nie Z et al (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6:74. https://doi.org/10.1038/s41392-020-00450-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Klein BJ, Wang X, Cui G et al (2016) PHF20 readers link methylation of histone H3K4 and p53 with H4K16 Acetylation. Cell Rep 17:1158–1170. https://doi.org/10.1016/j.celrep.2016.09.056

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li X, Wang M, Jing X et al (2018) Bone marrow- and adipose tissue-derived mesenchymal stem cells: characterization, differentiation, and applications in cartilage tissue Engineering. Crit Rev Eukaryot Gene Expr 28:285–310. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018023572

Article  PubMed  Google Scholar 

Li R, Dong Y, Li F (2021) ETS Proto-Oncogene 1 suppresses MicroRNA-128 transcription to promote osteogenic differentiation through the HOXA13/beta-Catenin Axis. Front Physiol 12:626248. https://doi.org/10.3389/fphys.2021.626248

Article  PubMed  PubMed Central  Google Scholar 

Liu H, Yin H, Yang T et al (2023) Long non-coding RNA PCAT5 regulates the progression of Esophageal Squamous Cell Carcinoma via miR-4295/PHF20. Heliyon 9:e22086. https://doi.org/10.1016/j.heliyon.2023.e22086

Article  PubMed  PubMed Central  CAS  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Article  PubMed  CAS  Google Scholar 

Long W, Zhao W, Ning B et al (2018) PHF20 collaborates with PARP1 to promote stemness and aggressiveness of neuroblastoma cells through activation of SOX2 and OCT4. J Mol Cell Biol 10:147–160. https://doi.org/10.1093/jmcb/mjy007

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ma Q, Long W, Xing C et al (2020) PHF20 promotes Glioblastoma Cell malignancies through a WISP1/BGN-Dependent pathway. Front Oncol 10:573318. https://doi.org/10.3389/fonc.2020.573318

Article  PubMed  PubMed Central  Google Scholar 

Ma L, Zhang X, Yu K et al (2021) Targeting SLC3A2 subunit of system X(C)(-) is essential for m(6)a reader YTHDC2 to be an endogenous ferroptosis inducer in lung adenocarcinoma. Free Radic Biol Med 168:25–43. https://doi.org/10.1016/j.freeradbiomed.2021.03.023

Article  PubMed  CAS  Google Scholar 

Mu M, Li X, Dong L et al (2023) METTL14 regulates chromatin bivalent domains in mouse embryonic stem cells. Cell Rep 42:113116. https://doi.org/10.1016/j.celrep.2023.113116

Article  PubMed  CAS  Google Scholar 

Naji A, Eitoku M, Favier B et al (2019) Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 76:3323–3348. https://doi.org/10.1007/s00018-019-03125-1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qu LP, Zhong YM, Zheng Z, Zhao RX (2017) CDH17 is a downstream effector of HOXA13 in modulating the Wnt/beta-catenin signaling pathway in gastric cancer. Eur Rev Med Pharmacol Sci 21:1234–1241

PubMed  Google Scholar 

Rossini M, Gatti D, Adami S (2013) Involvement of WNT/beta-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int 93:121–132. https://doi.org/10.1007/s00223-013-9749-z

Article  PubMed  CAS  Google Scholar 

Tang H, Du Y, Tan Z et al (2024) METTL14-mediated HOXA5 m(6)a modification alleviates osteoporosis via promoting WNK1 transcription to suppress NLRP3-dependent macrophage pyroptosis. J Orthop Translat 48:190–203. https://doi.org/10.1016/j.jot.2024.08.008

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Niu Q, Dai J et al (2021) circCUX1 promotes neuroblastoma progression and glycolysis by regulating the miR-338-3p/PHF20 axis. Gen Physiol Biophys 40:17–29. https://doi.org/10.4149/gpb_2020041

Article  PubMed  CAS  Google Scholar 

Wang X, Zou C, Li M et al (2023) METTL14 upregulates TCF1 through m6A mRNA methylation to stimulate osteogenic activity in osteoporosis. Hum Cell 36:178–194. https://doi.org/10.1007/s13577-022-00825-y

Article  PubMed  CAS  Google Scholar 

Wang P, Zhou W, Chen F et al (2024) METTL14-mediated methylation of SLC25A3 mitigates mitochondrial damage in osteoblasts, leading to the improvement of osteoporosis. Exp Gerontol 194:112496. https://doi.org/10.1016/j.exger.2024.112496

Article  PubMed  CAS  Google Scholar 

Wen Y, Shu F, Chen Y et al (2018) The prognostic value of HOXA13 in solid tumors: a meta-analysis. Clin Chim Acta 483:64–68. https://doi.org/10.1016/j.cca.2018.04.024

Article  PubMed  CAS  Google Scholar 

Yang JW, Jeong BC, Park J, Koh JT (2017) PHF20 positively regulates osteoblast differentiation via increasing the expression and activation of Runx2 with enrichment of H3K4me3. Sci Rep 7:8060. https://doi.org/10.1038/s41598-017-08868-0

Comments (0)

No login
gif