Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657. https://doi.org/10.1126/science.296.5573.1655
Article CAS PubMed Google Scholar
Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. https://doi.org/10.1038/nrc839
Article CAS PubMed Google Scholar
Janku F, Yap TA, Meric-Bernstam F (2018) Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 15(5):273–291. https://doi.org/10.1038/nrclinonc.2018.28
Article CAS PubMed Google Scholar
Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase—moving towards therapy. Biochim Biophys Acta 1784(1):159–185. https://doi.org/10.1016/j.bbapap.2007.10.003
Article CAS PubMed Google Scholar
Hanker AB, Kaklamani V, Arteaga CL (2019) Challenges for the clinical development of PI3K inhibitors: strategies to improve their impact in solid tumors. Cancer Discov 9(4):482–491. https://doi.org/10.1158/2159-8290.CD-18-1175
Article CAS PubMed PubMed Central Google Scholar
Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619. https://doi.org/10.1038/nrg1879
Article CAS PubMed Google Scholar
Burke JE, Williams RL (2015) Synergy in activating class I PI3Ks. Trends Biochem Sci 40(2):88–100. https://doi.org/10.1016/j.tibs.2014.12.003
Article CAS PubMed Google Scholar
Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discovery 8(8):627–644. https://doi.org/10.1038/nrd2926
Article CAS PubMed Google Scholar
Yin Y, Zhou Y, Sha S, Wu X, Wang SF, Qiao F, Song ZC, Zhu HL (2019) Development of novel chromeno [4, 3-c] pyrazol-4 (2H)-one derivates containing piperazine as inhibitors of PI3Kα. Bioorg Chem 92:103238. https://doi.org/10.1016/j.bioorg.2019.103238
Article CAS PubMed Google Scholar
Fan YH, Li W, Liu DD, Bai MX, Song HR, Xu YN, Lee SK, Zhou ZP, Wang J (2017) Design, synthesis, and biological evaluation of novel 3-substituted imidazo [1, 2-a] pyridine and quinazolin-4 (3H)-one derivatives as PI3Kα inhibitors. Eur J Med Chem 139:95–106. https://doi.org/10.1016/j.ejmech.2017.07.074
Article CAS PubMed Google Scholar
Meric-Bernstam F, Akcakanat A, Chen H, Do KA, Sangai T, Adkins F, Yao J (2012) PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors. Clin Cancer Res 18(6):1777–1789. https://doi.org/10.1158/1078-0432.CCR-11-2123
Article CAS PubMed PubMed Central Google Scholar
Thorpe LM, Yuzugullu H, Zhao JJ (2015) PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15(1):7–24. https://doi.org/10.1038/nrc3860
Article CAS PubMed PubMed Central Google Scholar
Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562. https://doi.org/10.1038/nrc2664
Article CAS PubMed Google Scholar
Wang X, Ding J, Meng LH (2015) PI3K isoform-selective inhibitors: next-generation targeted cancer therapies. Acta Pharmacol Sin 36(10):1170–1176. https://doi.org/10.1038/aps.2015.71
Article CAS PubMed PubMed Central Google Scholar
Garces AE, Stocks MJ (2018) Class 1 PI3K clinical candidates and recent inhibitor design strategies: a medicinal chemistry perspective. J Med Chem 62(10):4815–4850. https://doi.org/10.1021/acs.jmedchem.8b01492
Article CAS PubMed Google Scholar
Miller MS, Thompson PE, Gabelli SB (2019) Structural determinants of isoform selectivity in PI3K inhibitors. Biomolecules 9(3):82. https://doi.org/10.3390/biom9030082
Article CAS PubMed PubMed Central Google Scholar
Zhao W, QiuY KD (2017) Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Acta Pharm Sin B 7(1):27–37. https://doi.org/10.1016/j.apsb.2016.07.006
Jeong Y, Kwon D, Hong S (2014) Selective and potent small-molecule inhibitors of PI3Ks. Future Med Chem 6(7):737–756. https://doi.org/10.4155/fmc.14.28
Article CAS PubMed Google Scholar
Meng D, He W, Zhang Y, Liang Z, Zheng J, Zhang X, Zhan P, Chen HF, Li WJ, Cai L (2021) Development of PI3K inhibitors: advances in clinical trials and new strategies. Pharmacol Res 173:105900. https://doi.org/10.1016/j.phrs.2021.105900
Article CAS PubMed Google Scholar
Dent S, Cortés J, Im YH, Diéras V, Harbeck N, Krop IE, Wilson TR, Cui N, Schimmoller F, Hsu JY, He J, Laurentiis MD, Sousa S, Drullinsky P, Jacot W (2021) Phase III randomized study of taselisib or placebo with fulvestrant in estrogen receptor-positive, PIK3CA-mutant, HER2-negative, advanced breast cancer: the SANDPIPER trial. Ann Oncol 32(2):197–207. https://doi.org/10.1016/j.annonc.2020.10.596
Article CAS PubMed Google Scholar
Juric D, De Bono JS, LoRusso PM, Nemunaitis J, Heath EI, Kwak EL, Mercadé TM, Geuna E, de Miguel-Luken MJ, Patel C, Kuida K, Sankoh S, Westin EH, Zohren F, Shou Y, Tabernero J (2017) A first-in-human, phase I, dose-escalation study of TAK-117, a selective PI3Kα isoform inhibitor, in patients with advanced solid malignancies. Clin Cancer Res 23(17):5015–5023. https://doi.org/10.1158/1078-0432.CCR-16-2888
Article CAS PubMed PubMed Central Google Scholar
Olivera M, Jhaveri K, Juric D, Bedard PL, Cervantes A, Gambardella V, Hamilton E, Italiano A, Kalinsky K, Krop IE, Schmid P, Turner N, Varga A, Lei GY, Royer-Joo S, Thomas P, Schutzman JL, Saura C (2021) Abstract PS11-11: targeted safety events from a phase I/Ib study evaluating GDC-0077 alone and in combination with endocrine therapy (ET)±palbociclib (palbo) in patients (pts) with PIK3CA-mutant (mut), hormone receptor-positive/HER2-negative metastatic breast cancer (HR+/HER2-mBC). Cancer Res 81:11–11. https://doi.org/10.1158/1538-7445.10.1158/1538-7445
Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discovery 9(4):273–276. https://doi.org/10.1038/nrd3139
Article CAS PubMed Google Scholar
Santiago DN, Pevzner Y, Durand AA, Tran M, Scheerer RR, Daniel K, Sung S, Woodcock HL, Guida WC, Brooks WH (2012) Virtual target screening: validation using kinase inhibitors. J Chem Inf Model 52(8):2192–2203. https://doi.org/10.1021/ci300073m
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Qi HZ, Mao J, Zhang HR, Luo QQ, Hu ML, Shen C, Ding L (2022) Discovery of novel microtubule stabilizers targeting taxane binding site by applying molecular docking, molecular dynamics simulation, and anticancer activity testing. Bioorg Chem 122:105722. https://doi.org/10.1016/j.bioorg.2022.105722
Article CAS PubMed Google Scholar
Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395. https://doi.org/10.1124/pr.112.007336
Article CAS PubMed PubMed Central Google Scholar
da Silva Rocha SF, Olanda CG, Fokoue HH, Sant’Anna CM (2019) Virtual screening techniques in drug discovery: review and recent applications. Curr Top Med Chem 19(19):1751–1767. https://doi.org/10.2174/1568026619666190816101948
Comments (0)