Identification of novel inhibitors targeting PI3Kα via ensemble-based virtual screening method, biological evaluation and molecular dynamics simulation

Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657. https://doi.org/10.1126/science.296.5573.1655

Article  CAS  PubMed  Google Scholar 

Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. https://doi.org/10.1038/nrc839

Article  CAS  PubMed  Google Scholar 

Janku F, Yap TA, Meric-Bernstam F (2018) Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 15(5):273–291. https://doi.org/10.1038/nrclinonc.2018.28

Article  CAS  PubMed  Google Scholar 

Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase—moving towards therapy. Biochim Biophys Acta 1784(1):159–185. https://doi.org/10.1016/j.bbapap.2007.10.003

Article  CAS  PubMed  Google Scholar 

Hanker AB, Kaklamani V, Arteaga CL (2019) Challenges for the clinical development of PI3K inhibitors: strategies to improve their impact in solid tumors. Cancer Discov 9(4):482–491. https://doi.org/10.1158/2159-8290.CD-18-1175

Article  CAS  PubMed  PubMed Central  Google Scholar 

Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619. https://doi.org/10.1038/nrg1879

Article  CAS  PubMed  Google Scholar 

Burke JE, Williams RL (2015) Synergy in activating class I PI3Ks. Trends Biochem Sci 40(2):88–100. https://doi.org/10.1016/j.tibs.2014.12.003

Article  CAS  PubMed  Google Scholar 

Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discovery 8(8):627–644. https://doi.org/10.1038/nrd2926

Article  CAS  PubMed  Google Scholar 

Yin Y, Zhou Y, Sha S, Wu X, Wang SF, Qiao F, Song ZC, Zhu HL (2019) Development of novel chromeno [4, 3-c] pyrazol-4 (2H)-one derivates containing piperazine as inhibitors of PI3Kα. Bioorg Chem 92:103238. https://doi.org/10.1016/j.bioorg.2019.103238

Article  CAS  PubMed  Google Scholar 

Fan YH, Li W, Liu DD, Bai MX, Song HR, Xu YN, Lee SK, Zhou ZP, Wang J (2017) Design, synthesis, and biological evaluation of novel 3-substituted imidazo [1, 2-a] pyridine and quinazolin-4 (3H)-one derivatives as PI3Kα inhibitors. Eur J Med Chem 139:95–106. https://doi.org/10.1016/j.ejmech.2017.07.074

Article  CAS  PubMed  Google Scholar 

Meric-Bernstam F, Akcakanat A, Chen H, Do KA, Sangai T, Adkins F, Yao J (2012) PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors. Clin Cancer Res 18(6):1777–1789. https://doi.org/10.1158/1078-0432.CCR-11-2123

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thorpe LM, Yuzugullu H, Zhao JJ (2015) PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15(1):7–24. https://doi.org/10.1038/nrc3860

Article  CAS  PubMed  PubMed Central  Google Scholar 

Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562. https://doi.org/10.1038/nrc2664

Article  CAS  PubMed  Google Scholar 

Wang X, Ding J, Meng LH (2015) PI3K isoform-selective inhibitors: next-generation targeted cancer therapies. Acta Pharmacol Sin 36(10):1170–1176. https://doi.org/10.1038/aps.2015.71

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garces AE, Stocks MJ (2018) Class 1 PI3K clinical candidates and recent inhibitor design strategies: a medicinal chemistry perspective. J Med Chem 62(10):4815–4850. https://doi.org/10.1021/acs.jmedchem.8b01492

Article  CAS  PubMed  Google Scholar 

Miller MS, Thompson PE, Gabelli SB (2019) Structural determinants of isoform selectivity in PI3K inhibitors. Biomolecules 9(3):82. https://doi.org/10.3390/biom9030082

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao W, QiuY KD (2017) Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Acta Pharm Sin B 7(1):27–37. https://doi.org/10.1016/j.apsb.2016.07.006

Article  PubMed  Google Scholar 

Jeong Y, Kwon D, Hong S (2014) Selective and potent small-molecule inhibitors of PI3Ks. Future Med Chem 6(7):737–756. https://doi.org/10.4155/fmc.14.28

Article  CAS  PubMed  Google Scholar 

Meng D, He W, Zhang Y, Liang Z, Zheng J, Zhang X, Zhan P, Chen HF, Li WJ, Cai L (2021) Development of PI3K inhibitors: advances in clinical trials and new strategies. Pharmacol Res 173:105900. https://doi.org/10.1016/j.phrs.2021.105900

Article  CAS  PubMed  Google Scholar 

Dent S, Cortés J, Im YH, Diéras V, Harbeck N, Krop IE, Wilson TR, Cui N, Schimmoller F, Hsu JY, He J, Laurentiis MD, Sousa S, Drullinsky P, Jacot W (2021) Phase III randomized study of taselisib or placebo with fulvestrant in estrogen receptor-positive, PIK3CA-mutant, HER2-negative, advanced breast cancer: the SANDPIPER trial. Ann Oncol 32(2):197–207. https://doi.org/10.1016/j.annonc.2020.10.596

Article  CAS  PubMed  Google Scholar 

Juric D, De Bono JS, LoRusso PM, Nemunaitis J, Heath EI, Kwak EL, Mercadé TM, Geuna E, de Miguel-Luken MJ, Patel C, Kuida K, Sankoh S, Westin EH, Zohren F, Shou Y, Tabernero J (2017) A first-in-human, phase I, dose-escalation study of TAK-117, a selective PI3Kα isoform inhibitor, in patients with advanced solid malignancies. Clin Cancer Res 23(17):5015–5023. https://doi.org/10.1158/1078-0432.CCR-16-2888

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olivera M, Jhaveri K, Juric D, Bedard PL, Cervantes A, Gambardella V, Hamilton E, Italiano A, Kalinsky K, Krop IE, Schmid P, Turner N, Varga A, Lei GY, Royer-Joo S, Thomas P, Schutzman JL, Saura C (2021) Abstract PS11-11: targeted safety events from a phase I/Ib study evaluating GDC-0077 alone and in combination with endocrine therapy (ET)±palbociclib (palbo) in patients (pts) with PIK3CA-mutant (mut), hormone receptor-positive/HER2-negative metastatic breast cancer (HR+/HER2-mBC). Cancer Res 81:11–11. https://doi.org/10.1158/1538-7445.10.1158/1538-7445

Article  Google Scholar 

Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discovery 9(4):273–276. https://doi.org/10.1038/nrd3139

Article  CAS  PubMed  Google Scholar 

Santiago DN, Pevzner Y, Durand AA, Tran M, Scheerer RR, Daniel K, Sung S, Woodcock HL, Guida WC, Brooks WH (2012) Virtual target screening: validation using kinase inhibitors. J Chem Inf Model 52(8):2192–2203. https://doi.org/10.1021/ci300073m

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Qi HZ, Mao J, Zhang HR, Luo QQ, Hu ML, Shen C, Ding L (2022) Discovery of novel microtubule stabilizers targeting taxane binding site by applying molecular docking, molecular dynamics simulation, and anticancer activity testing. Bioorg Chem 122:105722. https://doi.org/10.1016/j.bioorg.2022.105722

Article  CAS  PubMed  Google Scholar 

Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395. https://doi.org/10.1124/pr.112.007336

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Silva Rocha SF, Olanda CG, Fokoue HH, Sant’Anna CM (2019) Virtual screening techniques in drug discovery: review and recent applications. Curr Top Med Chem 19(19):1751–1767. https://doi.org/10.2174/1568026619666190816101948

Article 

Comments (0)

No login
gif