MolGraph: a Python package for the implementation of molecular graphs and graph neural networks with TensorFlow and Keras

Cui Q, Lu S, Ni B, Zeng X, Tan Y, Chen YD, Zhao H (2020) Improved prediction of aqueous solubility of novel compounds by going deeper with deep learning. Front Oncol 10:121

Article  PubMed  PubMed Central  Google Scholar 

Wang Y-B, You Z-H, Yang S, Yi H-C, Chen Z-H, Zheng K (2020) A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network. BMC Med Inform Decis Making 20(2):1–9

Google Scholar 

Yuan Y, Zheng F, Zhan C-G (2018) Improved prediction of blood-brain barrier permeability through machine learning with combined use of molecular property-based descriptors and fingerprints. AAPS J 20(3):1–10

Article  Google Scholar 

Todeschini R, Consonni V (2008) Handbook of Molecular Descriptors. Wiley

Google Scholar 

Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754

Article  CAS  PubMed  Google Scholar 

Kearnes S, McCloskey K, Berndl M, Pande V, Riley P (2016) Molecular graph convolutions: moving beyond fingerprints. J Computer-aided Mol Des 30(8):595–608

Article  CAS  Google Scholar 

Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional networks on graphs for learning molecular fingerprints. Advances in Neural Information Processing Systems 28

Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR

Kensert A, Bouwmeester R, Efthymiadis K, Van Broeck P, Desmet G, Cabooter D (2021) Graph convolutional networks for improved prediction and interpretability of chromatographic retention data. Anal Chem 93(47):15633–15641

Article  CAS  PubMed  Google Scholar 

Jiang D, Wu Z, Hsieh C-Y, Chen G, Liao B, Wang Z, Shen C, Cao D, Wu J, Hou T (2021) Could graph neural networks learn better molecular representation for drug discovery? a comparison study of descriptor-based and graph-based models. J Cheminform 13(1):1–23

Article  Google Scholar 

Pope PE, Kolouri S, Rostami M, Martin CE, Hoffmann H (2019) Explainability methods for graph convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10772–10781

Girija SS (2016) Tensorflow: Large-scale machine learning on heterogeneous distributed systems. Software available from tensorflow. org 39(9)

Chollet F, et al (2015) Keras. GitHub. https://github.com/fchollet/keras

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems 32

Grattarola D, Alippi C (2021) Graph neural networks in tensorflow and keras with spektral [application notes]. IEEE Comput Intell Mag 16(1):99–106

Article  Google Scholar 

Wang M, Zheng D, Ye Z, Gan Q, Li M, Song X, Zhou J, Ma C, Yu L, Gai Y, et al (2019) Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv preprint arXiv:1909.01315

Ramsundar B, Eastman P, Walters P, Pande V, Leswing K, Wu Z (2019) Deep Learning for the Life Sciences. O’Reilly Media, ???

Fey M, Lenssen JE (2019) Fast graph representation learning with pytorch geometric. arXiv preprint arXiv:1903.02428

Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, Tacchetti A, Raposo D, Santoro A, Faulkner R, et al (2018) Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261

Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A (2017) Quantum-chemical insights from deep tensor neural networks. Nat Commun 8(1):1–8

Article  Google Scholar 

Welling M, Kipf TN (2016) Semi-supervised classification with graph convolutional networks. In: J. International Conference on Learning Representations (ICLR 2017)

Dwivedi VP, Joshi CK, Laurent T, Bengio Y, Bresson X (2020) Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982

Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are graph neural networks? arXiv preprint arXiv:1810.00826

Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. Stat 1050:20

Google Scholar 

Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein MM (2017) Geometric deep learning on graphs and manifolds using mixture model cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–5124

Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778

Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, Leswing K, Pande V (2018) Moleculenet: a benchmark for molecular machine learning. Chem Sci 9(2):513–530

Article  CAS  PubMed  Google Scholar 

Domingo-Almenara X, Guijas C, Billings E, Montenegro-Burke JR, Uritboonthai W, Aisporna AE, Chen E, Benton HP, Siuzdak G (2019) The metlin small molecule dataset for machine learning-based retention time prediction. Nat Commun 10(1):1–9

Article  Google Scholar 

Bonini P, Kind T, Tsugawa H, Barupal DK, Fiehn O (2020) Retip: retention time prediction for compound annotation in untargeted metabolomics. Anal Chem 92(11):7515–7522

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, Arita M (2016) Hydrogen rearrangement rules: computational ms/ms fragmentation and structure elucidation using ms-finder software. Anal Chem 88(16):7946–7958

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai Z, Tsugawa H, Wohlgemuth G, Mehta S, Mueller M, Zheng Y, Ogiwara A, Meissen J, Showalter M, Takeuchi K (2018) Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat Methods 15(1):53–56

Article  CAS  PubMed  Google Scholar 

De Cao N, Kipf T (2018) Molgan: An implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973

Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, Leskovec J (2019) Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265

Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, Arita M (2016) Hydrogen rearrangement rules: computational ms/ms fragmentation and structure elucidation using ms-finder software. Anal Chem 88(16):7946–7958

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roberts TC, Langer R, Wood MJ (2020) Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 19(10):673–694

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kensert A, Desmet G, Cabooter D (2024) A hands-on tutorial on quantitative structure-activity relationships using fully expressive graph neural networks. Analytica Chimica Acta 1331:343046. https://doi.org/10.1016/j.aca.2024.343046

Comments (0)

No login
gif