Food and Agriculture Organization. WHO. Rome: Sustainable healthy diets. Sustainable Healthy Diets—Guiding Principles; 2019.
Turner C, Aggarwal A, Walls H, Herforth A, Drewnowski A, Coates J, et al. Concepts and critical perspectives for food environment research: a global framework with implications for action in low- and middle-income countries. Glob Food Sec. 2018;18:93–101.
Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72.
Segovia-Siapco G, Burkholder-Cooley N, Haddad Tabrizi S, Sabaté J. Beyond meat: a comparison of the dietary intakes of vegetarian and non-vegetarian adolescents. Front Nutr. 2019;6(June):1–11.
Kamiński M, Skonieczna-Żydecka K, Nowak JK, Stachowska E. Global and local diet popularity rankings, their secular trends, and seasonal variation in Google Trends data. Nutrition. 2020;79:110759.
Harland J, Garton L. An update of the evidence relating to plant-based diets and cardiovascular disease, type 2 diabetes and overweight. Nutr Bull. 2016;41(4):323–38.
Aleksandrowicz L, Green R, Joy EJM, Smith P, Haines A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: a systematic review. PLoS ONE. 2016;11(11):1–16.
Nelson ME, Hamm MW, Hu FB, Abrams SA, Griffin TS. Alignment of healthy dietary patterns and environmental sustainability: a systematic review. Adv Nutr. 2016;7(6):1005–25.
Article PubMed PubMed Central Google Scholar
Fresán U, Sabaté J. Vegetarian diets: planetary health and its alignment with human health. Adv Nutr. 2019;10:S380–8.
Article PubMed PubMed Central Google Scholar
Hemler EC, Hu FB. Plant-based diets for personal, population, and planetary health. Adv Nutr. 2019;10(6):S275–83.
Article PubMed PubMed Central Google Scholar
Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the anthropocene: the EAT–lancet commission on healthy diets from sustainable food systems. Lancet. 2019;393(10170):447–92.
Semba RD, de Pee S, Kim B, McKenzie S, Nachman K, Bloem MW. Adoption of the ‘planetary health diet’ has different impacts on countries’ greenhouse gas emissions. Nat Food. 2020;1(8):481–4. https://doi.org/10.1038/s43016-020-0128-4.
Tuninetti M, Ridolfi L, Laio F. Compliance with EAT–Lancet dietary guidelines would reduce global water footprint but increase it for 40% of the world population. Nat Food. 2022;3(2):143–51.
Batis C, Marrón-Ponce JA, Stern D, Vandevijvere S, Barquera S, Rivera JA. Adoption of healthy and sustainable diets in Mexico does not imply higher expenditure on food. Nat Food. 2021;2(10):792–801.
Knuppel A, Papier K, Key TJ, Travis RC. EAT-Lancet score and major health outcomes: the EPIC-Oxford study. Lancet. 2019;394(10194):213–4. https://doi.org/10.1016/S0140-6736(19)31236-X.
Cacau LT, Benseñor IM, Goulart AC, de Cardoso O, Lotufo PA, Moreno LA, et al. Adherence to the planetary health diet index and obesity indicators in the Brazilian longitudinal study of adult health (ELSA-Brasil). Nutrients. 2021;13(11):1–12.
Ahmad SR. Plant-based diet for obesity treatment. Front Nutr. 2022. https://doi.org/10.3389/fnut.2022.952553.
Article PubMed PubMed Central Google Scholar
Pérusse L, Jacob R, Drapeau V, Llewellyn C, Arsenault BJ, Bureau A, et al. Understanding gene-lifestyle interaction in obesity: the role of mediation versus moderation. Lifestyle Genomics. 2022;15(2):67–76.
Masip G, Silventoinen K, Keski-Rahkonen A, Palviainen T, Sipilä PN, Kaprio J, et al. The genetic architecture of the association between eating behaviors and obesity: combining genetic twin modeling and polygenic risk scores. Am J Clin Nutr. 2020;112(4):956–66.
Article PubMed PubMed Central Google Scholar
Jacob R, Bertrand C, Llewellyn C, Couture C, Labonté MÈ, Tremblay A, et al. Dietary mediators of the genetic susceptibility to obesity—results from the Quebec family study. J Nutr. 2022;152(1):49–58.
Heianza Y, Zhou T, Sun D, Hu FB, Qi L. Healthful plant-based dietary patterns, genetic risk of obesity, and cardiovascular risk in the UK biobank study. Clin Nutr. 2021;40(7):4694–701.
Article PubMed PubMed Central CAS Google Scholar
Masip G, Attar A, Nielsen DE. Plant-based dietary patterns and genetic susceptibility to obesity in the CARTaGENE cohort. Obesity. 2024;32(2):409–22.
Article PubMed CAS Google Scholar
Suikki T, Maukonen M, Marjonen-Lindblad H, Kaartinen NE, Härkänen T, Jousilahti P, et al. Role of planetary health diet in the association between genetic susceptibility to obesity and anthropometric measures in adults. Int J Obes. 2024. https://doi.org/10.1038/s41366-024-01656-7.
Awadalla P, Boileau C, Payette Y, Idaghdour Y, Goulet JP, Knoppers B, et al. Cohort profile of the CARTaGENE study: Quebec’s population-based biobank for public health and personalized genomics. Int J Epidemiol. 2013;42(5):1285–99.
Parr CL, Hjartåker A, Scheel I, Lund E, Laake P, Veierød MB. Comparing methods for handling missing values in food-frequency questionnaires and proposing k nearest neighbours imputation: effects on dietary intake in the Norwegian Women and Cancer study (NOWAC). Public Health Nutr. 2008;11(4):361–70.
Karin M, Willett W. Self-administered semiquantitative food frequency questionnaires: patterns, predictors, and interpretation of omitted items. Epidemiology. 2009;20(2):295–301.
Horne JR, Gilliland J, Madill J. Assessing the validity of the past-month, online canadian diet history questionnaire ii pre and post nutrition intervention. Nutrients. 2020;12(5):1454.
Article PubMed PubMed Central Google Scholar
Cacau LT, De Carli E, de Carvalho AM, Lotufo PA, Moreno LA, Bensenor IM, et al. Development and validation of an index based on eat-lancet recommendations: the planetary health diet index. Nutrients. 2021;13(5):1698.
Article PubMed PubMed Central Google Scholar
Duhazé J, Jantzen R, Payette Y, De Malliard T, Labbé C, Noisel N, et al. Quantifying the predictive accuracy of a polygenic risk score for predicting incident cancer cases : application to the CARTaGENE cohort. Front Genet. 2020;11(April):1–14.
Khera AV, Chaffin M, Wade KH, Zahid S, Brancale J, Xia R, et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell. 2019;177(3):587–96. https://doi.org/10.1016/j.cell.2019.03.028.
Article PubMed PubMed Central CAS Google Scholar
Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.
Article PubMed PubMed Central CAS Google Scholar
Dashti HS, Miranda N, Cade BE, Huang T, Redline S, Karlson EW, et al. Interaction of obesity polygenic score with lifestyle risk factors in an electronic health record biobank. BMC Med. 2022;20(1):1–12.
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9.
Article PubMed CAS Google Scholar
Cancello R, Soranna D, Brunani A, Scacchi M, Tagliaferri A, Mai S, et al. Analysis of predictive equations for estimating resting energy expenditure in a large cohort of morbidly obese patients. Front Endocrinol. 2018;9:1–8.
Garriguet D. Impact of identifying plausible respondents on the under-reporting of energy intake in the Canadian community health survey. Heal Reports. 2008;19(4):47.
Stekhoven DJ, Bühlmann P. Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8.
Comments (0)