Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22:R741-752. https://doi.org/10.1016/j.cub.2012.07.024.
Article PubMed CAS Google Scholar
Santoro A, et al. Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res Rev. 2020;64:101142. https://doi.org/10.1016/j.arr.2020.101142.
Article PubMed CAS Google Scholar
Shokhirev MN, Johnson AA. Modeling the human aging transcriptome across tissues, health status, and sex. Aging Cell. 2021;20:e13280. https://doi.org/10.1111/acel.13280.
Article PubMed CAS Google Scholar
Bourque G, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19:199. https://doi.org/10.1186/s13059-018-1577-z.
Article PubMed PubMed Central CAS Google Scholar
Gorbunova V, et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021;596:43–53. https://doi.org/10.1038/s41586-021-03542-y.
Article PubMed PubMed Central CAS Google Scholar
Wahl D, Cavalier AN, Smith M, Seals DR, LaRocca TJ. Healthy aging interventions reduce repetitive element transcripts. J Gerontol A Biol Sci Med Sci. 2020;76(5):805–10. https://doi.org/10.1093/gerona/glaa302.
Article PubMed Central CAS Google Scholar
LaRocca TJ, Cavalier AN, Wahl D. Repetitive elements as a transcriptomic marker of aging: evidence in multiple datasets and models. Aging Cell. 2020;19:e13167. https://doi.org/10.1111/acel.13167.
Article PubMed PubMed Central CAS Google Scholar
De Cecco M, et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell. 2013;12:247–56. https://doi.org/10.1111/acel.12047.
Article PubMed CAS Google Scholar
Kreiling JA, Jones BC, Wood JG, De Cecco M, Criscione SW, Neretti N, et al. Contribution of retrotransposable elements to aging. In: Cristofari G, editor., et al., Human Retrotransposons in Health and Disease. Cham: Springer International Publishing; 2017. p. 297–321.
De Cecco M, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019;566:73–8. https://doi.org/10.1038/s41586-018-0784-9.
Article PubMed PubMed Central CAS Google Scholar
Goodier JL. Restricting retrotransposons: a review. Mob. DNA. 2016;7:16. https://doi.org/10.1186/s13100-016-0070-z.
Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet. 2019;20:657–74. https://doi.org/10.1038/s41576-019-0151-1.
Article PubMed CAS Google Scholar
Chen YG, Hur S. Cellular origins of dsRNA, their recognition and consequences. Nat Rev Mol Cell Biol. 2022;23:286–301. https://doi.org/10.1038/s41580-021-00430-1.
Article PubMed CAS Google Scholar
Ahmad S, et al. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell. 2018;172(797–810):e713. https://doi.org/10.1016/j.cell.2017.12.016.
Soto-Palma C, Niedernhofer LJ, Faulk CD, Dong X. Epigenetics, DNA damage, and aging. J Clin Invest. 2022;132(16). https://doi.org/10.1172/JCI158446.
Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. DNA damage-how and why we age? Elife. 2021;10. https://doi.org/10.7554/eLife.62852.
Chen H, Zheng X, Xiao D, Zheng Y. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. Aging Cell. 2016;15:542–52. https://doi.org/10.1111/acel.12465.
Article PubMed PubMed Central CAS Google Scholar
Patchsung M, et al. Alu siRNA to increase Alu element methylation and prevent DNA damage. Epigenomics. 2018;10:175–85. https://doi.org/10.2217/epi-2017-0096.
Article PubMed CAS Google Scholar
Alemán H, Esparza J, Ramirez FA, Astiazaran H, Payette H. Longitudinal evidence on the association between interleukin-6 and C-reactive protein with the loss of total appendicular skeletal muscle in free-living older men and women. Age and Ageing. 2011;40:469–75. https://doi.org/10.1093/ageing/afr040.
Varadhan R, et al. Simple biologically informed inflammatory index of two serum cytokines predicts 10 year all-cause mortality in older adults. J Gerontol A Biol Sci Med Sci. 2014;69:165–73. https://doi.org/10.1093/gerona/glt023.
Article PubMed CAS Google Scholar
Van Epps P, et al. Frailty has a stronger association with inflammation than age in older veterans. Immun Ageing. 2016;13:27. https://doi.org/10.1186/s12979-016-0082-z.
Article PubMed PubMed Central Google Scholar
Puzianowska-Kuznicka M, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing. 2016;13:21. https://doi.org/10.1186/s12979-016-0076-x.
Article PubMed PubMed Central CAS Google Scholar
Santos-Parker JR, et al. Curcumin supplementation and motor-cognitive function in healthy middle-aged and older adults. Nutr Healthy Aging. 2018;4:323–33. https://doi.org/10.3233/NHA-170029.
Article PubMed PubMed Central CAS Google Scholar
Rossman MJ, et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension. 2018;71:1056–63. https://doi.org/10.1161/HYPERTENSIONAHA.117.10787.
Article PubMed CAS Google Scholar
Martens CR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat Commun. 2018;9:1286. https://doi.org/10.1038/s41467-018-03421-7.
Article PubMed PubMed Central CAS Google Scholar
Martens CR, et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. Geroscience. 2020;42:667–86. https://doi.org/10.1007/s11357-020-00156-6.
Article PubMed PubMed Central Google Scholar
Kaplon RE, Hill SD, Bispham NZ, Santos-Parker JR, Nowlan MJ, Snyder LL, et al. Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults. Aging. 2016;8(6):1167–83. https://doi.org/10.18632/aging.100962.
Article PubMed PubMed Central Google Scholar
DeVan AE, et al. Effects of sodium nitrite supplementation on vascular function and related small metabolite signatures in middle-aged and older adults. J Appl Physiol. 2015;4:416–25.
Martin-Willett R, et al. Few structural brain changes associated with moderate-intensity interval training and low-intensity continuous training in a randomized trial of fitness and older adults. J Aging Phys Act. 2021;29:505–15. https://doi.org/10.1123/japa.2019-0352.
Martin-Willett R, et al. The influence of a 16-week exercise program, APOE status, and age on executive function task performance: a randomized trial. Exp Gerontol. 2021;152:111431. https://doi.org/10.1016/j.exger.2021.111431.
Article PubMed PubMed Central CAS Google Scholar
Weintraub S, et al. Cognition assessment using the NIH toolbox. Am Acad Neurol. 2013;3:54–64.
Reuben DB, et al. Motor assessment using the NIH toolbox. Am Acad Neurol. 2013;3:65–75.
Comments (0)