Repetitive element transcript accumulation is associated with inflammaging in humans

Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22:R741-752. https://doi.org/10.1016/j.cub.2012.07.024.

Article  PubMed  CAS  Google Scholar 

Santoro A, et al. Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res Rev. 2020;64:101142. https://doi.org/10.1016/j.arr.2020.101142.

Article  PubMed  CAS  Google Scholar 

Shokhirev MN, Johnson AA. Modeling the human aging transcriptome across tissues, health status, and sex. Aging Cell. 2021;20:e13280. https://doi.org/10.1111/acel.13280.

Article  PubMed  CAS  Google Scholar 

Bourque G, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19:199. https://doi.org/10.1186/s13059-018-1577-z.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gorbunova V, et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021;596:43–53. https://doi.org/10.1038/s41586-021-03542-y.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wahl D, Cavalier AN, Smith M, Seals DR, LaRocca TJ. Healthy aging interventions reduce repetitive element transcripts. J Gerontol A Biol Sci Med Sci. 2020;76(5):805–10. https://doi.org/10.1093/gerona/glaa302.

Article  PubMed Central  CAS  Google Scholar 

LaRocca TJ, Cavalier AN, Wahl D. Repetitive elements as a transcriptomic marker of aging: evidence in multiple datasets and models. Aging Cell. 2020;19:e13167. https://doi.org/10.1111/acel.13167.

Article  PubMed  PubMed Central  CAS  Google Scholar 

De Cecco M, et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell. 2013;12:247–56. https://doi.org/10.1111/acel.12047.

Article  PubMed  CAS  Google Scholar 

Kreiling JA, Jones BC, Wood JG, De Cecco M, Criscione SW, Neretti N, et al. Contribution of retrotransposable elements to aging. In: Cristofari G, editor., et al., Human Retrotransposons in Health and Disease. Cham: Springer International Publishing; 2017. p. 297–321.

Chapter  Google Scholar 

De Cecco M, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019;566:73–8. https://doi.org/10.1038/s41586-018-0784-9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Goodier JL. Restricting retrotransposons: a review. Mob. DNA. 2016;7:16. https://doi.org/10.1186/s13100-016-0070-z.

Article  Google Scholar 

Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet. 2019;20:657–74. https://doi.org/10.1038/s41576-019-0151-1.

Article  PubMed  CAS  Google Scholar 

Chen YG, Hur S. Cellular origins of dsRNA, their recognition and consequences. Nat Rev Mol Cell Biol. 2022;23:286–301. https://doi.org/10.1038/s41580-021-00430-1.

Article  PubMed  CAS  Google Scholar 

Ahmad S, et al. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell. 2018;172(797–810):e713. https://doi.org/10.1016/j.cell.2017.12.016.

Article  CAS  Google Scholar 

Soto-Palma C, Niedernhofer LJ, Faulk CD, Dong X. Epigenetics, DNA damage, and aging. J Clin Invest. 2022;132(16). https://doi.org/10.1172/JCI158446.

Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. DNA damage-how and why we age? Elife. 2021;10. https://doi.org/10.7554/eLife.62852.

Chen H, Zheng X, Xiao D, Zheng Y. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. Aging Cell. 2016;15:542–52. https://doi.org/10.1111/acel.12465.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Patchsung M, et al. Alu siRNA to increase Alu element methylation and prevent DNA damage. Epigenomics. 2018;10:175–85. https://doi.org/10.2217/epi-2017-0096.

Article  PubMed  CAS  Google Scholar 

Alemán H, Esparza J, Ramirez FA, Astiazaran H, Payette H. Longitudinal evidence on the association between interleukin-6 and C-reactive protein with the loss of total appendicular skeletal muscle in free-living older men and women. Age and Ageing. 2011;40:469–75. https://doi.org/10.1093/ageing/afr040.

Article  PubMed  Google Scholar 

Varadhan R, et al. Simple biologically informed inflammatory index of two serum cytokines predicts 10 year all-cause mortality in older adults. J Gerontol A Biol Sci Med Sci. 2014;69:165–73. https://doi.org/10.1093/gerona/glt023.

Article  PubMed  CAS  Google Scholar 

Van Epps P, et al. Frailty has a stronger association with inflammation than age in older veterans. Immun Ageing. 2016;13:27. https://doi.org/10.1186/s12979-016-0082-z.

Article  PubMed  PubMed Central  Google Scholar 

Puzianowska-Kuznicka M, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing. 2016;13:21. https://doi.org/10.1186/s12979-016-0076-x.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Santos-Parker JR, et al. Curcumin supplementation and motor-cognitive function in healthy middle-aged and older adults. Nutr Healthy Aging. 2018;4:323–33. https://doi.org/10.3233/NHA-170029.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rossman MJ, et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension. 2018;71:1056–63. https://doi.org/10.1161/HYPERTENSIONAHA.117.10787.

Article  PubMed  CAS  Google Scholar 

Martens CR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat Commun. 2018;9:1286. https://doi.org/10.1038/s41467-018-03421-7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Martens CR, et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. Geroscience. 2020;42:667–86. https://doi.org/10.1007/s11357-020-00156-6.

Article  PubMed  PubMed Central  Google Scholar 

Kaplon RE, Hill SD, Bispham NZ, Santos-Parker JR, Nowlan MJ, Snyder LL, et al. Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults. Aging. 2016;8(6):1167–83. https://doi.org/10.18632/aging.100962.

Article  PubMed  PubMed Central  Google Scholar 

DeVan AE, et al. Effects of sodium nitrite supplementation on vascular function and related small metabolite signatures in middle-aged and older adults. J Appl Physiol. 2015;4:416–25.

Google Scholar 

Martin-Willett R, et al. Few structural brain changes associated with moderate-intensity interval training and low-intensity continuous training in a randomized trial of fitness and older adults. J Aging Phys Act. 2021;29:505–15. https://doi.org/10.1123/japa.2019-0352.

Article  PubMed  Google Scholar 

Martin-Willett R, et al. The influence of a 16-week exercise program, APOE status, and age on executive function task performance: a randomized trial. Exp Gerontol. 2021;152:111431. https://doi.org/10.1016/j.exger.2021.111431.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Weintraub S, et al. Cognition assessment using the NIH toolbox. Am Acad Neurol. 2013;3:54–64.

Google Scholar 

Reuben DB, et al. Motor assessment using the NIH toolbox. Am Acad Neurol. 2013;3:65–75.

Comments (0)

No login
gif