Markan KR, Naber MC, Small SM, Peltekian L, Kessler RL, Potthoff MJ. FGF21 resistance is not mediated by downregulation of beta-klotho expression in white adipose tissue. Mol Metab. 2017;6(6):602–10.
Article CAS PubMed PubMed Central Google Scholar
Markan KR, Potthoff MJ. Metabolic fibroblast growth factors (FGFs): mediators of energy homeostasis. Semin Cell Dev Biol. 2016;53:85–93.
Article CAS PubMed Google Scholar
Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16(11):654–67.
Article CAS PubMed Google Scholar
Fazeli PK, Lun M, Kim SM, Bredella MA, Wright S, Zhang Y, Lee H, Catana C, Klibanski A, Patwari P, Steinhauser ML. FGF21 and the late adaptive response to starvation in humans. J Clin Investig. 2015;125(12):4601–11.
Article PubMed PubMed Central Google Scholar
Solon-Biet SM, Cogger VC, Pulpitel T, Heblinski M, Wahl D, McMahon AC, Warren A, Durrant-Whyte J, Walters KA, Krycer JR, Ponton F, Gokarn R, Wali JA, Ruohonen K, Conigrave AD, James DE, Raubenheimer D, Morrison CD, Le Couteur DG, Simpson SJ. Defining the nutritional and metabolic context of FGF21 using the geometric framework. Cell Metab. 2016;24(4):555–65.
Article CAS PubMed Google Scholar
Lundsgaard A-M, Fritzen AM, Sjøberg KA, Myrmel LS, Madsen L, Wojtaszewski JFP, Richter EA, Kiens B. Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates. Mol Metab. 2017;6(1):22–9.
Article CAS PubMed Google Scholar
Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M, Véniant MM, Xu J. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology. 2012;153(1):69–80.
Article CAS PubMed Google Scholar
Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, Maratos-Flier E. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes. 2010;59(11):2781–9.
Article CAS PubMed PubMed Central Google Scholar
Keuper M, Häring HU, Staiger H. Circulating FGF21 levels in human health and metabolic disease. Exp Clin Endocrinol Diabetes. 2020;128(11):752–70.
Article CAS PubMed Google Scholar
Zhang Y, Yan J, Yang N, Qian Z, Nie H, Yang Z, Yan D, Wei X, Ruan L, Huang Y, Zhang C, Zhang L. High-level serum fibroblast growth factor 21 concentration is closely associated with an increased risk of cardiovascular diseases: a systematic review and meta-analysis. Front Cardiovasc Med. 2021;8:705273.
Article PubMed PubMed Central Google Scholar
Yang N, Zhang Y, Huang Y, Yan J, Qian Z, Li H, Luo P, Yang Z, Luo M, Wei X, Nie H, Ruan L, Hao Y, Gao S, Zheng K, Zhang C, Zhang L. FGF21 at physiological concentrations regulates vascular endothelial cell function through multiple pathways. Biochim Biophys Acta Mol Basis Dis. 2022;1868(12):166558.
Article CAS PubMed Google Scholar
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao F-H, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen H-Z, Chen J, Ci W, Ding B-S, Ding Q, Gao F, Han J-DJ, Huang K, Ju Z, Kong Q-P, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang Y-J, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang Y-W, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu G-H. Biomarkers of aging. Sci China Life Sci. 2023;66(5). https://doi.org/10.1016/0531-5565(88)90025-.
Consortium AB, Zhang L, Guo J, Liu Y, Sun S, Liu B, Yang Q, Tao J, Tian X-L, Pu J, Hong H, Wang M, Chen H-Z, Ren J, Wang X, Liang Z, Wang Y, Huang K, Zhang W, Qu J, Ju Z, Liu G-H, Pei G, Li J, Zhang C. A framework of biomarkers for vascular aging: a consensus statement by the aging biomarker consortium. Life Med. 2023;2(4):lnad033.
Liberale L, Badimon L, Montecucco F, Lüscher TF, Libby P, Camici GG. Inflammation, aging, and cardiovascular disease: JACC review Topic of the Week. J Am Coll Cardiol. 2022;79(8):837–47.
Article CAS PubMed PubMed Central Google Scholar
Hu C, Zhang X, Teng T, Ma Z-G, Tang Q-Z. Cellular senescence in cardiovascular diseases: a systematic review. Aging Dis. 2022;13(1):103–28.
Article PubMed PubMed Central Google Scholar
Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA, Kuro-O M. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282(37):26687–95.
Article CAS PubMed Google Scholar
Li S, Chen J, Wei P, Zou T, You J. Fibroblast growth factor 21: a fascinating perspective on the regulation of muscle metabolism. Int J Mol Sci. 2023;24(23):16951.
Article CAS PubMed PubMed Central Google Scholar
Yan J, Nie Y, Cao J, Luo M, Yan M, Chen Z, He B. The roles and pharmacological effects of FGF21 in preventing aging-associated metabolic diseases. Front Cardiovasc Med. 2021;8:655575.
Article CAS PubMed PubMed Central Google Scholar
Flippo KH, Potthoff MJ. Metabolic messengers: FGF21. Nat Metab. 2021;3(3):309–17.
Article CAS PubMed PubMed Central Google Scholar
Gallego-Escuredo JM, Gómez-Ambrosi J, Catalan V, Domingo P, Giralt M, Frühbeck G, Villarroya F. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes (Lond). 2015;39(1):121–9.
Article CAS PubMed Google Scholar
Fujii N, Uta S, Kobayashi M, Sato T, Okita N, Higami Y. Impact of aging and caloric restriction on fibroblast growth factor 21 signaling in rat white adipose tissue. Exp Gerontol. 2019;118:55–64.
Article CAS PubMed Google Scholar
Chen C-D, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA. 2007;104(50):19796–801.
Article CAS PubMed PubMed Central Google Scholar
Wozniak J, Floege J, Ostendorf T, Ludwig A. Key metalloproteinase-mediated pathways in the kidney. Nat Rev Nephrol. 2021;17(8):513–27.
Article CAS PubMed Google Scholar
Saar-Kovrov V, Donners MMPC, van der Vorst EPC. Shedding of klotho: functional implications in chronic kidney disease and associated vascular disease. Front Cardiovasc Med. 2020;7:617842.
Article CAS PubMed Google Scholar
Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the klotho antiaging protein and therapeutic considerations. Front Aging. 2022;3:931331.
Article PubMed PubMed Central Google Scholar
Kuro-o M. Endocrine FGFs and Klothos: emerging concepts. Trends Endocrinol Metab. 2008;19(7):239–45.
Article CAS PubMed Google Scholar
Yan J, Wang J, Huang H, Huang Y, Mi T, Zhang C, Zhang L. Fibroblast growth factor 21 delayed endothelial replicative senescence and protected cells from H2O2-induced premature senescence through SIRT1. Am J Transl Res. 2017;9(10):4492–501.
CAS PubMed PubMed Central Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C-Y, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(Web Server issue):W316–22.
Article CAS PubMed PubMed Central Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Comments (0)