Binding energy referencing in X-ray photoelectron spectroscopy

Powell, C. J. Improvements in the reliability of X-ray photoelectron spectroscopy for surface analysis. J. Chem. Educ. 81, 1734 (2004).

Article  CAS  Google Scholar 

Powell, C. J. Growth of surface analysis and the development of databases and modeling software for Auger-electron spectroscopy and X-ray photoelectron spectroscopy. Microsc. Today 24, 16 (2016).

Article  Google Scholar 

Linford, M. R. et al. Proliferation of faulty materials data analysis in the literature. Microsc. Microanal. 26, 1 (2020).

Article  CAS  PubMed  Google Scholar 

Major, G. H. et al. Assessment of the frequency and nature of erroneous X-ray photoelectron spectroscopy analyses in the scientific literature. J. Vac. Sci. Technol. A 38, 061204 (2020).

Article  CAS  Google Scholar 

Greczynski, G. & Hultman, L. X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mat. Sci. 107, 100591 (2020).

Article  CAS  Google Scholar 

Krishna, D. N. G. & Philip, J. Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): recent developments and challenges. Appl. Surf. Sci. Adv. 12, 100332 (2022).

Article  Google Scholar 

Baer, D. R. et al. Introduction to topical collection: reproducibility challenges and solutions with a focus on guides to XPS analysis. J. Vac. Sci. Technol. A 39, 021601 (2021).

Article  CAS  Google Scholar 

Greczynski, G. & Hultman, L. A step-by-step guide to perform X-ray photoelectron spectroscopy. J. Appl. Phys. 132, 011101 (2022).

Article  CAS  Google Scholar 

Fairley, N. et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 5, 100112 (2021).

Article  Google Scholar 

Major, G. H. et al. Perspective on improving the quality of surface and material data analysis in the scientific literature with a focus on X-ray photoelectron spectroscopy (XPS). J. Vac. Sci. Technol. A 41, 038501 (2023).

Article  CAS  Google Scholar 

Pinder, J. W. et al. Avoiding common errors in X-ray photoelectron spectroscopy data collection and analysis, and properly reporting instrument parameters. Appl. Surf. Sci. Adv. 19, 100534 (2024).

Article  Google Scholar 

Greczynski, G., Richard, T. H., Hellgren, N., Lewin, E. & Hultman, L. X-ray photoelectron spectroscopy of thin films. Nat. Rev. Methods Primers 3, 40 (2023).

Article  CAS  Google Scholar 

Baer, D. R. et al. Practical guides for X-ray photoelectron spectroscopy: first steps in planning, conducting, and reporting XPS measurements. J. Vac. Sci. Technol. A 37, 031401 (2019).

Article  Google Scholar 

Stevie, F. A., Garcia, R., Shallenberger, J., Newman, J. G. & Donley, C. L. Sample handling, preparation and mounting for XPS and other surface analytical techniques. J. Vac. Sci. Technol. A 38, 063202 (2020).

Article  CAS  Google Scholar 

Major, G. H. et al. Practical guide for curve fitting in X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 38, 061203 (2020).

Article  CAS  Google Scholar 

Major, G. H., Fernandez, V., Fairley, N., Smith, E. F. & Linford, M. R. Guide to XPS data analysis: applying appropriate constraints to synthetic peaks in XPS peak fitting. J. Vac. Sci. Technol. A 40, 063201 (2022).

Article  CAS  Google Scholar 

Herrera-Gomez, A. Uncertainties in photoemission peak fitting accounting for the covariance with background parameters. J. Vac. Sci. Technol. A 38, 033211 (2020).

Article  CAS  Google Scholar 

Tougaard, S. Practical guide to the use of backgrounds in quantitative XPS. J. Vac. Sci. Technol. A 39, 011201 (2021).

Article  CAS  Google Scholar 

Hertz, H. Ueber sehr schnelle electrische Schwingungen [German]. Ann. Phys 31, 421–448 (1887).

Article  Google Scholar 

Egelhoff, W. F. Jr Core-level binding-energy shifts at surfaces and in solids. Surf. Sci. Rep. 6, 253–415 (1987).

Article  Google Scholar 

Einstein, A. On a heuristic point of view about the creation and conversion of light. Ann. Phys. 17, 132–148 (1905).

Article  CAS  Google Scholar 

Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders College Publishing, 1976).

Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999).

Article  CAS  Google Scholar 

Fahlman, A. et al. Electron spectroscopy and chemical binding. Nature 210, 4–8 (1966).

Article  CAS  Google Scholar 

Sokolowski, E., Nordling, C. & Siegbahn, K. Chemical shift effect in inner electronic levels of Cu due to oxidation. Phys. Rev. 110, 776 (1958).

Article  CAS  Google Scholar 

Hagström, S., Nordling, C. & Siegbahn, K. Electron spectroscopic determination of the chemical valence state. Z. Phys. 178, 439–444 (1964).

Article  Google Scholar 

Hagström, S., Nordling, C. & Siegbahn, K. Electron spectroscopy for chemical analyses. Phys. Lett. 9, 235–236 (1964).

Article  Google Scholar 

Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf. Interface Anal. 43, 689–713 (2011).

Article  CAS  Google Scholar 

Shinotsuka, H., Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm. Surf. Interface Anal. 47, 871 (2015).

Article  CAS  Google Scholar 

Scofield, J. H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 8, 129–137 (1976).

Article  CAS  Google Scholar 

Hnatowich, D. J., Hudis, J., Perlman, M. L. & Ragaini, R. C. Determination of charging effect in photoelectron spectroscopy of nonconducting solids. J. Appl. Phys. 42, 4883–4886 (1971).

Article  CAS  Google Scholar 

Wagner, C. D. Studies of the charging of insulators in ESCA. J. Electron Spectrosc. Relat. Phenom. 18, 345–349 (1980).

Article  CAS  Google Scholar 

Ascarelli, P. & Missoni, G. Secondary electron emission and the detection of the vacuum level in ESCA. J. Electron Spectrosc. Relat. Phenom. 5, 417–435 (1974).

Article  CAS  Google Scholar 

Henke, B. L., Liesegang, J. & Smith, S. D. Soft-X-ray-induced secondary-electron emission from semiconductors and insulators: models and measurements. Phys. Rev. B 19, 3004 (1979).

Article  CAS  Google Scholar 

Henke, B. L., Knauer, J. P. & Premaratne, K. The characterization of X‐ray photocathodes in the 0.1–10‐keV photon energy region. J. Appl. Phys. 52, 1509–1520 (1981).

Article  CAS  Google Scholar 

Tanuma, S. et al. Experimental determination of electron inelastic mean free paths in 13 elemental solids in the 50 to 5000 eV energy range by elastic-peak electron spectroscopy. Surf. Interface Anal. 37, 833 (2005).

Article  CAS  Google Scholar 

Werner, W. S. M., Tomastik, C., Cabela, T., Richter, G. & Störi, H. Elastic electron reflection for determination of the inelastic mean free path of medium energy electrons in 24 elemental solids for energies between 50 and 3400 eV. J. Electron Spectrosc. Relat. Phenom. 113, 127 (2001).

Article  CAS  Google Scholar 

Seah, M. P. Simple universal curve for the energy‐dependent electron attenuation length for all materials. Surf. Interface Anal. 44, 1353–1359 (2012).

Article  CAS  Google Scholar 

Fowler, J. F. X-ray induced conductivity in insulating materials. Proc. R. Soc. Lond. A 236, 464–480 (1956).

Article  Google Scholar 

Cazaux, J. Mechanisms of charging in electron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 105, 155–185 (1999).

Article  CAS  Google Scholar 

Mendoza‐Sánchez, B., Fernandez, V., Bargiela, P., Fairley, N. & Baltrusaitis, J. Surface science insight note: charge compensation and charge correction in X‐ray photoelectron spectroscopy. Surf. Interface Anal. 56, 525–531 (2024).

Article 

Comments (0)

No login
gif