Powell, C. J. Improvements in the reliability of X-ray photoelectron spectroscopy for surface analysis. J. Chem. Educ. 81, 1734 (2004).
Powell, C. J. Growth of surface analysis and the development of databases and modeling software for Auger-electron spectroscopy and X-ray photoelectron spectroscopy. Microsc. Today 24, 16 (2016).
Linford, M. R. et al. Proliferation of faulty materials data analysis in the literature. Microsc. Microanal. 26, 1 (2020).
Article CAS PubMed Google Scholar
Major, G. H. et al. Assessment of the frequency and nature of erroneous X-ray photoelectron spectroscopy analyses in the scientific literature. J. Vac. Sci. Technol. A 38, 061204 (2020).
Greczynski, G. & Hultman, L. X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mat. Sci. 107, 100591 (2020).
Krishna, D. N. G. & Philip, J. Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): recent developments and challenges. Appl. Surf. Sci. Adv. 12, 100332 (2022).
Baer, D. R. et al. Introduction to topical collection: reproducibility challenges and solutions with a focus on guides to XPS analysis. J. Vac. Sci. Technol. A 39, 021601 (2021).
Greczynski, G. & Hultman, L. A step-by-step guide to perform X-ray photoelectron spectroscopy. J. Appl. Phys. 132, 011101 (2022).
Fairley, N. et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 5, 100112 (2021).
Major, G. H. et al. Perspective on improving the quality of surface and material data analysis in the scientific literature with a focus on X-ray photoelectron spectroscopy (XPS). J. Vac. Sci. Technol. A 41, 038501 (2023).
Pinder, J. W. et al. Avoiding common errors in X-ray photoelectron spectroscopy data collection and analysis, and properly reporting instrument parameters. Appl. Surf. Sci. Adv. 19, 100534 (2024).
Greczynski, G., Richard, T. H., Hellgren, N., Lewin, E. & Hultman, L. X-ray photoelectron spectroscopy of thin films. Nat. Rev. Methods Primers 3, 40 (2023).
Baer, D. R. et al. Practical guides for X-ray photoelectron spectroscopy: first steps in planning, conducting, and reporting XPS measurements. J. Vac. Sci. Technol. A 37, 031401 (2019).
Stevie, F. A., Garcia, R., Shallenberger, J., Newman, J. G. & Donley, C. L. Sample handling, preparation and mounting for XPS and other surface analytical techniques. J. Vac. Sci. Technol. A 38, 063202 (2020).
Major, G. H. et al. Practical guide for curve fitting in X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 38, 061203 (2020).
Major, G. H., Fernandez, V., Fairley, N., Smith, E. F. & Linford, M. R. Guide to XPS data analysis: applying appropriate constraints to synthetic peaks in XPS peak fitting. J. Vac. Sci. Technol. A 40, 063201 (2022).
Herrera-Gomez, A. Uncertainties in photoemission peak fitting accounting for the covariance with background parameters. J. Vac. Sci. Technol. A 38, 033211 (2020).
Tougaard, S. Practical guide to the use of backgrounds in quantitative XPS. J. Vac. Sci. Technol. A 39, 011201 (2021).
Hertz, H. Ueber sehr schnelle electrische Schwingungen [German]. Ann. Phys 31, 421–448 (1887).
Egelhoff, W. F. Jr Core-level binding-energy shifts at surfaces and in solids. Surf. Sci. Rep. 6, 253–415 (1987).
Einstein, A. On a heuristic point of view about the creation and conversion of light. Ann. Phys. 17, 132–148 (1905).
Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders College Publishing, 1976).
Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999).
Fahlman, A. et al. Electron spectroscopy and chemical binding. Nature 210, 4–8 (1966).
Sokolowski, E., Nordling, C. & Siegbahn, K. Chemical shift effect in inner electronic levels of Cu due to oxidation. Phys. Rev. 110, 776 (1958).
Hagström, S., Nordling, C. & Siegbahn, K. Electron spectroscopic determination of the chemical valence state. Z. Phys. 178, 439–444 (1964).
Hagström, S., Nordling, C. & Siegbahn, K. Electron spectroscopy for chemical analyses. Phys. Lett. 9, 235–236 (1964).
Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf. Interface Anal. 43, 689–713 (2011).
Shinotsuka, H., Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm. Surf. Interface Anal. 47, 871 (2015).
Scofield, J. H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 8, 129–137 (1976).
Hnatowich, D. J., Hudis, J., Perlman, M. L. & Ragaini, R. C. Determination of charging effect in photoelectron spectroscopy of nonconducting solids. J. Appl. Phys. 42, 4883–4886 (1971).
Wagner, C. D. Studies of the charging of insulators in ESCA. J. Electron Spectrosc. Relat. Phenom. 18, 345–349 (1980).
Ascarelli, P. & Missoni, G. Secondary electron emission and the detection of the vacuum level in ESCA. J. Electron Spectrosc. Relat. Phenom. 5, 417–435 (1974).
Henke, B. L., Liesegang, J. & Smith, S. D. Soft-X-ray-induced secondary-electron emission from semiconductors and insulators: models and measurements. Phys. Rev. B 19, 3004 (1979).
Henke, B. L., Knauer, J. P. & Premaratne, K. The characterization of X‐ray photocathodes in the 0.1–10‐keV photon energy region. J. Appl. Phys. 52, 1509–1520 (1981).
Tanuma, S. et al. Experimental determination of electron inelastic mean free paths in 13 elemental solids in the 50 to 5000 eV energy range by elastic-peak electron spectroscopy. Surf. Interface Anal. 37, 833 (2005).
Werner, W. S. M., Tomastik, C., Cabela, T., Richter, G. & Störi, H. Elastic electron reflection for determination of the inelastic mean free path of medium energy electrons in 24 elemental solids for energies between 50 and 3400 eV. J. Electron Spectrosc. Relat. Phenom. 113, 127 (2001).
Seah, M. P. Simple universal curve for the energy‐dependent electron attenuation length for all materials. Surf. Interface Anal. 44, 1353–1359 (2012).
Fowler, J. F. X-ray induced conductivity in insulating materials. Proc. R. Soc. Lond. A 236, 464–480 (1956).
Cazaux, J. Mechanisms of charging in electron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 105, 155–185 (1999).
Mendoza‐Sánchez, B., Fernandez, V., Bargiela, P., Fairley, N. & Baltrusaitis, J. Surface science insight note: charge compensation and charge correction in X‐ray photoelectron spectroscopy. Surf. Interface Anal. 56, 525–531 (2024).
Comments (0)