Abdiche, Y., Malashock, D., Pinkerton, A. & Pons, J. Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal. Biochem. 377, 209–217 (2008).
Article CAS PubMed Google Scholar
Ingram, J. R., Schmidt, F. I. & Ploegh, H. L. Exploiting nanobodies’ singular traits. Annu. Rev. Immunol. 36, 695–715 (2018).
Article CAS PubMed Google Scholar
Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).
Article CAS PubMed Google Scholar
Clackson, T., Hoogenboom, H. R., Griffiths, A. D. & Winter, G. Making antibody fragments using phage display libraries. Nature 352, 624–628 (1991).
Article CAS PubMed Google Scholar
Hanes, J. & Plückthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl Acad. Sci. USA 94, 4937–4942 (1997).
Article CAS PubMed PubMed Central Google Scholar
Kieke, M. C., Cho, B. K., Boder, E. T., Kranz, D. M. & Wittrup, K. D. Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng. 10, 1303–1310 (1997).
Article CAS PubMed Google Scholar
Porebski, B. T. et al. Rapid discovery of high-affinity antibodies via massively parallel sequencing, ribosome display and affinity screening. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01093-3 (2023).
Weinstein, J. B. et al. A potent alpaca-derived nanobody that neutralizes SARS-CoV-2 variants. iScience 25, 103960 (2022).
Article CAS PubMed PubMed Central Google Scholar
Harris, N. J. et al. Allosteric activation or inhibition of PI3Kγ mediated through conformational changes in the p110γ helical domain. eLife 12, RP88058 (2023).
Article CAS PubMed PubMed Central Google Scholar
Rathinaswamy, M. K. et al. Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation. Sci. Adv. 7, eabj4282 (2021).
Article CAS PubMed PubMed Central Google Scholar
Bates, T. A. et al. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6-specific nanobody restricts M. tuberculosis growth in macrophages. eLife 12, RP91930 (2024).
Article PubMed PubMed Central Google Scholar
Suresh, S. et al. Molecular basis for plasma membrane recruitment of PI4KA by EFR3. Preprint at bioRxiv https://doi.org/10.1101/2024.04.30.587787 (2024).
Bates, T. A. et al. Cross-reactivity of SARS-CoV structural protein antibodies against SARS-CoV-2. Cell Rep. https://doi.org/10.1016/j.celrep.2021.108737 (2021).
Thibodeau, M. C. et al. Molecular basis for the recruitment of the Rab effector protein WDR44 by the GTPase Rab11. J. Biol. Chem. 299, 102764 (2023).
Article CAS PubMed Google Scholar
Rathinaswamy, M. K. et al. HDX–MS-optimized approach to characterize nanobodies as tools for biochemical and structural studies of class IB phosphoinositide 3-kinases. Structure 29, 1371–1381.e6 (2021).
Article CAS PubMed Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Article CAS PubMed PubMed Central Google Scholar
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
Article CAS PubMed PubMed Central Google Scholar
Oughtred, R. et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200 (2021).
Article CAS PubMed Google Scholar
Del Toro, N. et al. The IntAct database: efficient access to fine-grained molecular interaction data. Nucleic Acids Res. 50, D648–D653 (2022).
Chen, D.-J. Fiber optic direct-sensing bioprobe using a phase-tracking approach. US patent 5804453A (1998).
Tan, H. et al. Fiber-optic assay apparatus based on phase-shift interferometry. US patent US7319525B2 (2008).
Rich, R. L. & Myszka, D. G. Survey of the year 2007 commercial optical biosensor literature. J. Mol. Recognit. 21, 355–400 (2008).
Article CAS PubMed Google Scholar
Liedberg, B., Nylander, C. & Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983).
Marquart, A. SPRpages home. SPRpages https://www.sprpages.nl/ (2024).
Schasfoort, R. B. M. et al. Handbook of Surface Plasmon Resonance 2nd edn (ed. Schasfoort, R. B. M.) (Royal Society of Chemistry, 2017).
Zuk, R., Choo, S., Ma, W. & Witte, K. Enzyme activity measurements using bio-layer interferometry. US Patent US20090068694A1. (2009).
Dua, P. et al. Cell-SELEX based identification of an RNA aptamer for Escherichia coli and its use in various detection formats. Mol. Cells 39, 807–813 (2016).
Article CAS PubMed PubMed Central Google Scholar
Verzijl, D., Riedl, T., Parren, P. W. H. I. & Gerritsen, A. F. A novel label-free cell-based assay technology using biolayer interferometry. Biosens. Bioelectron. 87, 388–395 (2017).
Article CAS PubMed Google Scholar
Liu, Y. & Liao, J. Quantitative FRET (Förster resonance energy transfer) analysis for SENP1 protease kinetics determination. J. Vis. Exp. https://doi.org/10.3791/4430 (2013).
Nutsch, K. et al. A covalent inhibitor of the YAP-TEAD transcriptional complex identified by high-throughput screening. RSC Chem. Biol. 4, 894–905 (2023).
Article CAS PubMed PubMed Central Google Scholar
Biro, F. N., Zhai, J., Doucette, C. W. & Hingorani, M. M. Application of stopped-flow kinetics methods to investigate the mechanism of action of a DNA repair protein. J. Vis. Exp. https://doi.org/10.3791/1874 (2010).
Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).
Article CAS PubMed PubMed Central Google Scholar
Dessau, M. A. & Modis, Y. Protein crystallization for X-ray crystallography. J. Vis. Exp. https://doi.org/10.3791/2285 (2011).
Alvarez, M., Zinoviev, K., Moreno, M. & Lechuga, L. M. in Optical Biosensors (eds. Ligler, F. S. & Taitt, C. R.) 419–452 (Elsevier Science, 2008).
Johnson, C. M. Isothermal titration calorimetry. Methods Mol. Biol. 2263, 135–159 (2021).
Article CAS PubMed Google Scholar
Hellman, L. M. & Fried, M. G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc. 2, 1849–1861 (2007).
Article CAS PubMed PubMed Central Google Scholar
Chramiec-Głąbik, A., Rawski, M., Glatt, S. & Lin, T.-Y. Electrophoretic mobility shift assay (EMSA) and microscale thermophoresis (MST) methods to measure interactions between tRNAs and their modifying enzymes. Methods Mol. Biol. 2666, 29–53 (2023).
Huang, L. & Zhang, C. Microscale thermophoresis (MST) to detect the interaction between purified protein and small molecule. Methods Mol. Biol. 2213, 187–193 (2021).
Article CAS PubMed Google Scholar
Bhayani, J. A. & Ballicora, M. A. Determination of dissociation constants of protein ligands by thermal shift assay. Biochem. Biophys. Res. Commun. 590, 1–6 (2022).
Article CAS PubMed Google Scholar
Soltermann, F. et al. Quantifying protein–protein interactions by molecular counting with mass photometry. Angew. Chem. Int. Ed. Engl. 59, 10774–10779 (2020).
Article CAS PubMed PubMed Central Google Scholar
Young, G. et al. Quantitative mass imaging of single molecules. Science
Comments (0)