Biolayer interferometry for measuring the kinetics of protein–protein interactions and nanobody binding

Abdiche, Y., Malashock, D., Pinkerton, A. & Pons, J. Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal. Biochem. 377, 209–217 (2008).

Article  CAS  PubMed  Google Scholar 

Ingram, J. R., Schmidt, F. I. & Ploegh, H. L. Exploiting nanobodies’ singular traits. Annu. Rev. Immunol. 36, 695–715 (2018).

Article  CAS  PubMed  Google Scholar 

Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

Article  CAS  PubMed  Google Scholar 

Clackson, T., Hoogenboom, H. R., Griffiths, A. D. & Winter, G. Making antibody fragments using phage display libraries. Nature 352, 624–628 (1991).

Article  CAS  PubMed  Google Scholar 

Hanes, J. & Plückthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl Acad. Sci. USA 94, 4937–4942 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kieke, M. C., Cho, B. K., Boder, E. T., Kranz, D. M. & Wittrup, K. D. Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng. 10, 1303–1310 (1997).

Article  CAS  PubMed  Google Scholar 

Porebski, B. T. et al. Rapid discovery of high-affinity antibodies via massively parallel sequencing, ribosome display and affinity screening. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01093-3 (2023).

Weinstein, J. B. et al. A potent alpaca-derived nanobody that neutralizes SARS-CoV-2 variants. iScience 25, 103960 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harris, N. J. et al. Allosteric activation or inhibition of PI3Kγ mediated through conformational changes in the p110γ helical domain. eLife 12, RP88058 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rathinaswamy, M. K. et al. Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation. Sci. Adv. 7, eabj4282 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bates, T. A. et al. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6-specific nanobody restricts M. tuberculosis growth in macrophages. eLife 12, RP91930 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Suresh, S. et al. Molecular basis for plasma membrane recruitment of PI4KA by EFR3. Preprint at bioRxiv https://doi.org/10.1101/2024.04.30.587787 (2024).

Bates, T. A. et al. Cross-reactivity of SARS-CoV structural protein antibodies against SARS-CoV-2. Cell Rep. https://doi.org/10.1016/j.celrep.2021.108737 (2021).

Thibodeau, M. C. et al. Molecular basis for the recruitment of the Rab effector protein WDR44 by the GTPase Rab11. J. Biol. Chem. 299, 102764 (2023).

Article  CAS  PubMed  Google Scholar 

Rathinaswamy, M. K. et al. HDX–MS-optimized approach to characterize nanobodies as tools for biochemical and structural studies of class IB phosphoinositide 3-kinases. Structure 29, 1371–1381.e6 (2021).

Article  CAS  PubMed  Google Scholar 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oughtred, R. et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200 (2021).

Article  CAS  PubMed  Google Scholar 

Del Toro, N. et al. The IntAct database: efficient access to fine-grained molecular interaction data. Nucleic Acids Res. 50, D648–D653 (2022).

Article  PubMed  Google Scholar 

Chen, D.-J. Fiber optic direct-sensing bioprobe using a phase-tracking approach. US patent 5804453A (1998).

Tan, H. et al. Fiber-optic assay apparatus based on phase-shift interferometry. US patent US7319525B2 (2008).

Rich, R. L. & Myszka, D. G. Survey of the year 2007 commercial optical biosensor literature. J. Mol. Recognit. 21, 355–400 (2008).

Article  CAS  PubMed  Google Scholar 

Liedberg, B., Nylander, C. & Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983).

Article  CAS  Google Scholar 

Marquart, A. SPRpages home. SPRpages https://www.sprpages.nl/ (2024).

Schasfoort, R. B. M. et al. Handbook of Surface Plasmon Resonance 2nd edn (ed. Schasfoort, R. B. M.) (Royal Society of Chemistry, 2017).

Zuk, R., Choo, S., Ma, W. & Witte, K. Enzyme activity measurements using bio-layer interferometry. US Patent US20090068694A1. (2009).

Dua, P. et al. Cell-SELEX based identification of an RNA aptamer for Escherichia coli and its use in various detection formats. Mol. Cells 39, 807–813 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verzijl, D., Riedl, T., Parren, P. W. H. I. & Gerritsen, A. F. A novel label-free cell-based assay technology using biolayer interferometry. Biosens. Bioelectron. 87, 388–395 (2017).

Article  CAS  PubMed  Google Scholar 

Liu, Y. & Liao, J. Quantitative FRET (Förster resonance energy transfer) analysis for SENP1 protease kinetics determination. J. Vis. Exp. https://doi.org/10.3791/4430 (2013).

Nutsch, K. et al. A covalent inhibitor of the YAP-TEAD transcriptional complex identified by high-throughput screening. RSC Chem. Biol. 4, 894–905 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biro, F. N., Zhai, J., Doucette, C. W. & Hingorani, M. M. Application of stopped-flow kinetics methods to investigate the mechanism of action of a DNA repair protein. J. Vis. Exp. https://doi.org/10.3791/1874 (2010).

Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dessau, M. A. & Modis, Y. Protein crystallization for X-ray crystallography. J. Vis. Exp. https://doi.org/10.3791/2285 (2011).

Alvarez, M., Zinoviev, K., Moreno, M. & Lechuga, L. M. in Optical Biosensors (eds. Ligler, F. S. & Taitt, C. R.) 419–452 (Elsevier Science, 2008).

Johnson, C. M. Isothermal titration calorimetry. Methods Mol. Biol. 2263, 135–159 (2021).

Article  CAS  PubMed  Google Scholar 

Hellman, L. M. & Fried, M. G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc. 2, 1849–1861 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chramiec-Głąbik, A., Rawski, M., Glatt, S. & Lin, T.-Y. Electrophoretic mobility shift assay (EMSA) and microscale thermophoresis (MST) methods to measure interactions between tRNAs and their modifying enzymes. Methods Mol. Biol. 2666, 29–53 (2023).

Article  PubMed  Google Scholar 

Huang, L. & Zhang, C. Microscale thermophoresis (MST) to detect the interaction between purified protein and small molecule. Methods Mol. Biol. 2213, 187–193 (2021).

Article  CAS  PubMed  Google Scholar 

Bhayani, J. A. & Ballicora, M. A. Determination of dissociation constants of protein ligands by thermal shift assay. Biochem. Biophys. Res. Commun. 590, 1–6 (2022).

Article  CAS  PubMed  Google Scholar 

Soltermann, F. et al. Quantifying protein–protein interactions by molecular counting with mass photometry. Angew. Chem. Int. Ed. Engl. 59, 10774–10779 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Young, G. et al. Quantitative mass imaging of single molecules. Science

Comments (0)

No login
gif