Review of In Vivo Investigations on Metal Implants for Bone Tissue Engineering

Kashan JS, Al-Allaq AA, Fouad H, Yahia ME. Effect of multi-walled carbon nanotube on the microstructure, physical and mechanical properties of ZrO2–CaO/poly (methyl methacrylate) biocomposite for bone reconstruction application. Sci Adv Mater. 2023;15(3):405–11.

Article  CAS  Google Scholar 

Kulkarni SV, Nemade AC, Sonawwanay PD. An overview on metallic and ceramic biomaterials. Recent Adv Manuf Process Syst: Select Proc RAM. 2022;2021:149–65.

Article  Google Scholar 

Pedrero SG, Llamas-Sillero P, Serrano-López J. A multidisciplinary journey towards bone tissue engineering. Materials. 2021;14(17):4896.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Zhao Z. Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds. Bioactive Mater. 2021;6(11):4110–40.

Article  CAS  Google Scholar 

Lim DJ. Cross-linking agents for electrospinning-based bone tissue engineering. Int J Mol Sci. 2022;23(10):5444.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9(45):26252–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao X, Zhang W, Sun T, Zhang J, Li Z. Application of metal ions in bone tissue engineering. Chinese J Tissue Eng Res. 2024;28(3):439.

Google Scholar 

Li S, Cui Y, Liu H, Tian Y, Wang G, Fan Y, Wang Y. Application of bioactive metal ions in the treatment of bone defects. J Mater Chem B. 2022;10(45):9369–88.

Article  CAS  PubMed  Google Scholar 

Fardjahromi MA, Nazari H, Tafti SA, Razmjou A, Mukhopadhyay S, Warkiani ME. Metal-organic framework-based nanomaterials for bone tissue engineering and wound healing. Mater Today Chem. 2022;23:100670.

Article  Google Scholar 

Han HS, Loffredo S, Jun I, Edwards J, Kim YC, Seok HK, Glyn Jones S. Current status and outlook on the clinical translation of biodegradable metals. Mater Today. 2019;23:57–71.

Article  CAS  Google Scholar 

Klíma K, Ulmann D, Bartoš M, Španko M, Dušková J, Vrbová R, Čapek J. A complex evaluation of the in-vivo biocompatibility and degradation of an extruded ZnMgSr absorbable alloy implanted into rabbit bones for 360 days. Int J Mol Sci. 2021;22(24):13444.

Article  PubMed  PubMed Central  Google Scholar 

Al-allaq AA, Kashan JS. A review: in vivo studies of bioceramics as bone substitute materials. Nano Select. 2023;4(2):123–44.

Article  CAS  Google Scholar 

Yan X, Cao W, Li H. Biomedical alloys and physical surface modifications: a mini-review. Materials. 2021;15(1):66.

Article  PubMed  PubMed Central  Google Scholar 

Antunes RA, De Oliveira MCL. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomater. 2012;8(3):937–62.

Article  CAS  PubMed  Google Scholar 

Saravanan M, Devaraju A, Venkateshwaran N, Krishnakumari A, Saarvesh J. A review on recent progress in coatings on AISI austenitic stainless steel. Mater Today: Proc. 2018;5(6):14392–6.

CAS  Google Scholar 

Hermawan H, Ramdan D, Djuansjah JR. Metals for biomedical applications. Biomed Eng Theory Appl. 2011;1:411–30.

Google Scholar 

Sillekens WH, Bormann D. Biomedical applications of magnesium alloys. In: Advances in wrought magnesium alloys (pp. 427–54). Woodhead Publishing; 2012. https://doi.org/10.1533/9780857093844.3.427.

Zhang T, Wang W, Liu J, Wang L, Tang Y, Wang K. A review on magnesium alloys for biomedical applications. Front Bioeng Biotechnol. 2022;10:953344.

Article  PubMed  PubMed Central  Google Scholar 

Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9:1–27.

Article  Google Scholar 

Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In vivo bone tissue engineering strategies: advances and prospects. Polymers. 2022;14(15):3222.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao C, Zhou H, Li W, Li Y, Fan H, Yao J, Liao Y, Zhang X. Study of in vivo bone tissue engineering. In: Interface Oral Health Science 2007: Proceedings of the 2nd International Symposium for Interface Oral Health Science, Held in Sendai, Japan, Between 18 and 19 February, 2007. Japan: Springer; 2007. pp. 85–94.

Basu B, Katti DS, Kumar A. Advanced biomaterials: fundamentals, processing, and applications. John Wiley & Sons; 2010.

Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. San Diego, CA: Academic Press; 1996.

Google Scholar 

Al-Allaq ALIA, Kashan JS, El-Wakad MT, Soliman AM. HA/HDPE reinforced with MWCNTs for bone reconstruction and replacement application. Mater Plast. 2022;59(1):109–21.

Article  Google Scholar 

Monte JP, Fontes A, Santos BS, Pereira GA, Pereira G. Recent advances in hydroxyapatite/polymer/silver nanoparticles scaffolds with antimicrobial activity for bone regeneration. Mater Lett. 2023;338:134027.

Article  CAS  Google Scholar 

Al-Allaq AA, Kashan JS, El-Wakad MT, Soliman AM. The bio-composites (hydroxyapatite/high-density polyethylene) materials rein-forced with multi-walled carbon nanotubes for bone tissue repair. J Ceram Process Res. 2021;22(4):446–54.

Google Scholar 

Prasad A, Bhasney SM, Prasannavenkadesan V, Sankar MR, Katiyar V. Polylactic acid reinforced with nano-hydroxyapatite bioabsorbable cortical screws for bone fracture treatment. J Polym Res. 2023;30(5):177.

Article  CAS  Google Scholar 

Niinomi M, Narushima T, Nakai M. Advances in metallic biomaterials. Heidelberg, DE: Springer; 2015.

Book  Google Scholar 

Niinomi M. Fatigue characteristics of metallic biomaterials. Int J Fatigue. 2007;29(6):992–1000.

Article  CAS  Google Scholar 

Santos G. The importance of metallic materials as biomaterials. Adv Tissue Eng Regen Med Open Access. 2017;3(1):300–2.

Google Scholar 

Hallab N, Jacobs JJ, Black J. Hypersensitivity to metallic biomaterials: a review of leukocyte migration inhibition assays. Biomaterials. 2000;21(13):1301–14.

Article  CAS  PubMed  Google Scholar 

Jaafar A, Hecker C, Árki P, Joseph Y. Sol-gel derived hydroxyapatite coatings for titanium implants: a review. Bioengineering. 2020;7(4):127.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Catauro M, Bollino F, Papale F, Lamanna G. TiO2/pcl hybrid layers prepared via sol-gel dip coating for the surface modification of titanium implants: characterization and bioactivity evaluation. Appl Mechanics Mater. 2015;18(760):353–8.

Article  Google Scholar 

Wolford LM. Factors to consider in joint prosthesis systems. In: Baylor University Medical Center Proceedings (Vol. 19, No. 3, pp. 232–38). Taylor & Francis; 2006. https://doi.org/10.1080/08998280.2006.11928170.

de Viteri VS, Fuentes E. Titanium and titanium alloys as biomaterials. Tribol-Fundamentals Adv. 2013;1(5):154–81.

Google Scholar 

Chandra A, Ryu JJ, Karra P, Shrotriya P, Tvergaard V, Gaisser M, Weik T. Life expectancy of modular Ti6Al4V hip implants: influence of stress and environment. J Mech Behav Biomed Mater. 2011;4(8):1990–2001.

Article  CAS  PubMed  Google Scholar 

Wen CE, Xu W, Hu WY, Hodgson PD. Hydroxyapatite/titania sol–gel coatings on titanium–zirconium alloy for biomedical applications. Acta Biomater. 2007;3(3):403–10.

Article  CAS  PubMed  Google Scholar 

Daculsi G. History of development and use of the bioceramics and biocomposites. Handbook of bioceramics and biocomposites. 2016;1–386. https://doi.org/10.1007/978-3-319-09230-0_2-2.

Eriksson C, Lausmaa J, Nygren H. Interactions between human whole blood and modified TiO2-surfaces: influence of surface topography and oxide thickness on leukocyte adhesion and activation. Biomaterials. 2001;22(14):1987–96.

Article  CAS  PubMed  Google Scholar 

Letic-Gavrilovic A, Scandurra R, Abe K. Genetic potential of interfacial guided osteogenesis in implant devices. Dental Mater J. 2000;19(2):99–132.

Article  CAS  Google Scholar 

Ravanetti F, Borghetti P, De Angelis E, Chiesa ROBERTO, Martini FM, Gabbi C, Cacchioli A. In vitro cellular response and in vivo primary osteointegration of electrochemically modified titanium. Acta Biomater. 2010;6(3):1014–24.

Article  CAS  PubMed 

Comments (0)

No login
gif