Kashan JS, Al-Allaq AA, Fouad H, Yahia ME. Effect of multi-walled carbon nanotube on the microstructure, physical and mechanical properties of ZrO2–CaO/poly (methyl methacrylate) biocomposite for bone reconstruction application. Sci Adv Mater. 2023;15(3):405–11.
Kulkarni SV, Nemade AC, Sonawwanay PD. An overview on metallic and ceramic biomaterials. Recent Adv Manuf Process Syst: Select Proc RAM. 2022;2021:149–65.
Pedrero SG, Llamas-Sillero P, Serrano-López J. A multidisciplinary journey towards bone tissue engineering. Materials. 2021;14(17):4896.
Article CAS PubMed PubMed Central Google Scholar
Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Zhao Z. Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds. Bioactive Mater. 2021;6(11):4110–40.
Lim DJ. Cross-linking agents for electrospinning-based bone tissue engineering. Int J Mol Sci. 2022;23(10):5444.
Article CAS PubMed PubMed Central Google Scholar
Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9(45):26252–62.
Article CAS PubMed PubMed Central Google Scholar
Gao X, Zhang W, Sun T, Zhang J, Li Z. Application of metal ions in bone tissue engineering. Chinese J Tissue Eng Res. 2024;28(3):439.
Li S, Cui Y, Liu H, Tian Y, Wang G, Fan Y, Wang Y. Application of bioactive metal ions in the treatment of bone defects. J Mater Chem B. 2022;10(45):9369–88.
Article CAS PubMed Google Scholar
Fardjahromi MA, Nazari H, Tafti SA, Razmjou A, Mukhopadhyay S, Warkiani ME. Metal-organic framework-based nanomaterials for bone tissue engineering and wound healing. Mater Today Chem. 2022;23:100670.
Han HS, Loffredo S, Jun I, Edwards J, Kim YC, Seok HK, Glyn Jones S. Current status and outlook on the clinical translation of biodegradable metals. Mater Today. 2019;23:57–71.
Klíma K, Ulmann D, Bartoš M, Španko M, Dušková J, Vrbová R, Čapek J. A complex evaluation of the in-vivo biocompatibility and degradation of an extruded ZnMgSr absorbable alloy implanted into rabbit bones for 360 days. Int J Mol Sci. 2021;22(24):13444.
Article PubMed PubMed Central Google Scholar
Al-allaq AA, Kashan JS. A review: in vivo studies of bioceramics as bone substitute materials. Nano Select. 2023;4(2):123–44.
Yan X, Cao W, Li H. Biomedical alloys and physical surface modifications: a mini-review. Materials. 2021;15(1):66.
Article PubMed PubMed Central Google Scholar
Antunes RA, De Oliveira MCL. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomater. 2012;8(3):937–62.
Article CAS PubMed Google Scholar
Saravanan M, Devaraju A, Venkateshwaran N, Krishnakumari A, Saarvesh J. A review on recent progress in coatings on AISI austenitic stainless steel. Mater Today: Proc. 2018;5(6):14392–6.
Hermawan H, Ramdan D, Djuansjah JR. Metals for biomedical applications. Biomed Eng Theory Appl. 2011;1:411–30.
Sillekens WH, Bormann D. Biomedical applications of magnesium alloys. In: Advances in wrought magnesium alloys (pp. 427–54). Woodhead Publishing; 2012. https://doi.org/10.1533/9780857093844.3.427.
Zhang T, Wang W, Liu J, Wang L, Tang Y, Wang K. A review on magnesium alloys for biomedical applications. Front Bioeng Biotechnol. 2022;10:953344.
Article PubMed PubMed Central Google Scholar
Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9:1–27.
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In vivo bone tissue engineering strategies: advances and prospects. Polymers. 2022;14(15):3222.
Article CAS PubMed PubMed Central Google Scholar
Bao C, Zhou H, Li W, Li Y, Fan H, Yao J, Liao Y, Zhang X. Study of in vivo bone tissue engineering. In: Interface Oral Health Science 2007: Proceedings of the 2nd International Symposium for Interface Oral Health Science, Held in Sendai, Japan, Between 18 and 19 February, 2007. Japan: Springer; 2007. pp. 85–94.
Basu B, Katti DS, Kumar A. Advanced biomaterials: fundamentals, processing, and applications. John Wiley & Sons; 2010.
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. San Diego, CA: Academic Press; 1996.
Al-Allaq ALIA, Kashan JS, El-Wakad MT, Soliman AM. HA/HDPE reinforced with MWCNTs for bone reconstruction and replacement application. Mater Plast. 2022;59(1):109–21.
Monte JP, Fontes A, Santos BS, Pereira GA, Pereira G. Recent advances in hydroxyapatite/polymer/silver nanoparticles scaffolds with antimicrobial activity for bone regeneration. Mater Lett. 2023;338:134027.
Al-Allaq AA, Kashan JS, El-Wakad MT, Soliman AM. The bio-composites (hydroxyapatite/high-density polyethylene) materials rein-forced with multi-walled carbon nanotubes for bone tissue repair. J Ceram Process Res. 2021;22(4):446–54.
Prasad A, Bhasney SM, Prasannavenkadesan V, Sankar MR, Katiyar V. Polylactic acid reinforced with nano-hydroxyapatite bioabsorbable cortical screws for bone fracture treatment. J Polym Res. 2023;30(5):177.
Niinomi M, Narushima T, Nakai M. Advances in metallic biomaterials. Heidelberg, DE: Springer; 2015.
Niinomi M. Fatigue characteristics of metallic biomaterials. Int J Fatigue. 2007;29(6):992–1000.
Santos G. The importance of metallic materials as biomaterials. Adv Tissue Eng Regen Med Open Access. 2017;3(1):300–2.
Hallab N, Jacobs JJ, Black J. Hypersensitivity to metallic biomaterials: a review of leukocyte migration inhibition assays. Biomaterials. 2000;21(13):1301–14.
Article CAS PubMed Google Scholar
Jaafar A, Hecker C, Árki P, Joseph Y. Sol-gel derived hydroxyapatite coatings for titanium implants: a review. Bioengineering. 2020;7(4):127.
Article CAS PubMed PubMed Central Google Scholar
Catauro M, Bollino F, Papale F, Lamanna G. TiO2/pcl hybrid layers prepared via sol-gel dip coating for the surface modification of titanium implants: characterization and bioactivity evaluation. Appl Mechanics Mater. 2015;18(760):353–8.
Wolford LM. Factors to consider in joint prosthesis systems. In: Baylor University Medical Center Proceedings (Vol. 19, No. 3, pp. 232–38). Taylor & Francis; 2006. https://doi.org/10.1080/08998280.2006.11928170.
de Viteri VS, Fuentes E. Titanium and titanium alloys as biomaterials. Tribol-Fundamentals Adv. 2013;1(5):154–81.
Chandra A, Ryu JJ, Karra P, Shrotriya P, Tvergaard V, Gaisser M, Weik T. Life expectancy of modular Ti6Al4V hip implants: influence of stress and environment. J Mech Behav Biomed Mater. 2011;4(8):1990–2001.
Article CAS PubMed Google Scholar
Wen CE, Xu W, Hu WY, Hodgson PD. Hydroxyapatite/titania sol–gel coatings on titanium–zirconium alloy for biomedical applications. Acta Biomater. 2007;3(3):403–10.
Article CAS PubMed Google Scholar
Daculsi G. History of development and use of the bioceramics and biocomposites. Handbook of bioceramics and biocomposites. 2016;1–386. https://doi.org/10.1007/978-3-319-09230-0_2-2.
Eriksson C, Lausmaa J, Nygren H. Interactions between human whole blood and modified TiO2-surfaces: influence of surface topography and oxide thickness on leukocyte adhesion and activation. Biomaterials. 2001;22(14):1987–96.
Article CAS PubMed Google Scholar
Letic-Gavrilovic A, Scandurra R, Abe K. Genetic potential of interfacial guided osteogenesis in implant devices. Dental Mater J. 2000;19(2):99–132.
Ravanetti F, Borghetti P, De Angelis E, Chiesa ROBERTO, Martini FM, Gabbi C, Cacchioli A. In vitro cellular response and in vivo primary osteointegration of electrochemically modified titanium. Acta Biomater. 2010;6(3):1014–24.
Comments (0)