Tinospora cordifolia Silver Nanoparticles Attenuated the Lipopolysaccharide-induced Testicular Inflammation in Golden Hamster

Wang S, Zhang K, Yao Y, Li J, Deng S. Bacterial infections affect male fertility: a focus on the oxidative stress-autophagy axis. Front Cell Dev Biol. 2021;9(October):1–15. https://doi.org/10.3389/fcell.2021.727812.

Article  Google Scholar 

Oghbaei H et al. “Effects of bacteria on male fertility: spermatogenesis and sperm function.” Life Sci. 2020;256. https://doi.org/10.1016/j.lfs.2020.117891.

Marchiani S, et al. Effects of common Gram-negative pathogens causing male genitourinary-tract infections on human sperm functions. Sci Rep. 2021;11(1):1–10. https://doi.org/10.1038/s41598-021-98710-5.

Article  CAS  Google Scholar 

Azenabor A, et al. Impact of inflammation on male reproductive tract. J Reprod Infertil. 2015;16(3):123–9.

PubMed  PubMed Central  Google Scholar 

Bertani B, Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018;8(1):1–33. https://doi.org/10.1128/ecosalplus.esp-0001-2018.

Article  CAS  Google Scholar 

Nishio K, et al. Attenuation of lipopolysaccharide (LPS)-induced cytotoxicity by tocopherols and tocotrienols. Redox Biol. 2013;1(1):97–103. https://doi.org/10.1016/j.redox.2012.10.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duque GA, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5(OCT):1–12. https://doi.org/10.3389/fimmu.2014.00491.

Article  CAS  Google Scholar 

Ahmad SM, Hoot SB, Qazi PH, Verma V. Phylogenetic patterns and genetic diversity of Indian Tinospora species based on chloroplast sequence data and cytochrome P450 polymorphisms. Plant Syst Evol. 2009;281(1–2):87–96. https://doi.org/10.1007/s00606-009-0189-1.

Article  CAS  Google Scholar 

Meena AK, Singh A, Panda P, Mishra S, Rao MM. “Tinospora cordifolia: its bioactivities and evaluation of physicochemical properties.” Int J Pharmacogn Phytochem Res. 2010;2(2) 50–55. [Online]. Available: www.ijppr.com.

Mehra R, Naved T, Arora M, Madan S. Standardization and evaluation of formulation parameters of Tinospora cordifolia tablet. J Adv Pharm Educ Res. 2013;3(4):440–9.

Google Scholar 

Agarwal S, Ramamurthy P, Fernandes B, Rath A, Sidhu P. Assessment of antimicrobial activity of different concentrations of Tinospora cordifolia against Streptococcus mutans: an in vitro study. Dent Res J (Isfahan). 2019;16(1):24–8. https://doi.org/10.4103/1735-3327.249556.

Article  PubMed  Google Scholar 

Alexander CP, Kirubakaran CJW, Michael RD. Water soluble fraction of Tinospora cordifolia leaves enhanced the non-specific immune mechanisms and disease resistance in Oreochromis mossambicus. Fish Shellfish Immunol. 2010;29(5):765–72. https://doi.org/10.1016/j.fsi.2010.07.003.

Article  PubMed  Google Scholar 

Patil KG. Antidiabetic activity of Tinospora cordifolia (fam: Menispermaceae) in alloxan treated albino rats. Appl Res J. 2015;1(5):316–9.

Google Scholar 

Patgiri B, Umretia B, Vaishnav P, Prajapati P, Shukla V, Ravishankar B. Anti-inflammatory activity of Guduchi Ghana (aqueous extract of Tinospora cordifolia Miers.). AYU (An Int Q J Res Ayurveda). 2014;35(1):108. https://doi.org/10.4103/0974-8520.141958.

Article  Google Scholar 

Saha J, Begum A, Mukherjee A, Kumar S. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of methylene blue dye. Sustain Environ Res. 2017;27(5):245–50. https://doi.org/10.1016/j.serj.2017.04.003.

Article  CAS  Google Scholar 

Zaid Almarbd Z, Mutter Abbass N. Synthesis and characterization of TiO2, Ag2O, and graphene oxide nanoparticles with polystyrene as a nonocomposites and some of their applications. Eurasian Chem Commun. 2022;4(10):1033–43. https://doi.org/10.22034/ecc.2022.342801.1469.

Article  CAS  Google Scholar 

Sabouri Z, Oskuee RK, Sabouri S, Moghaddas SSTH, Samarghandian S, Abdulabbas HS, Darroudi M. Phytoextract-mediated synthesis of Ag-doped ZnO–MgO–CaO nanocomposite using Ocimum basilicum L seeds extract as a highly efficient photocatalyst and evaluation of their biological effects. Ceram Int. 2023;49(12):20989–97.

Article  CAS  Google Scholar 

Sabouri Z, Sabouri M, Moghaddas SSTH, et al. Plant-mediated synthesis of Ag and Se dual-doped ZnO-CaO-CuO nanocomposite using Nymphaea alba L. extract: assessment of their photocatalytic and biological properties. Biomass Conv Bioref. 2023. https://doi.org/10.1007/s13399-023-04984-2.

Kareem TA, Mahdi DK. Synthesis and characterization of silver nanoparticles-doped mesoporous bioactive glass prepared by spray pyrolysis. Eurasian Chem Commun. 2022;4(4):330337. http://www.echemcom.com/article_145019.html.

Sabouri Z, Sammak S, Sabouri S, Moghaddas SSTH, Darroudi M. Green synthesis of Ag-Se doped ZnO-Co3O4-NiO fivenary nanocomposite using poly anionic cellulose and evaluation of their anticancer and photocatalyst applications. Chem Methodol. 2024;8(3):164–76.

CAS  Google Scholar 

Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M. Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J Colloid Interface Sci. 2016;470:268–75. https://doi.org/10.1016/j.jcis.2016.02.060.

Article  CAS  PubMed  Google Scholar 

Kalwar K, Shan D. Antimicrobial effect of silver nanoparticles (AgNPs) and their mechanism – a mini review. Micro Nano Lett. 2018;13(3):277–80. https://doi.org/10.1049/mnl.2017.0648.

Article  CAS  Google Scholar 

Roy P, Das B, Mohanty A, Mohapatra S. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl Nanosci. 2017;7(8):843–50. https://doi.org/10.1007/s13204-017-0621-8.

Article  CAS  Google Scholar 

Jain N, Jain P, Rajput D, Patil UK. “Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity.” Micro Nano Syst Lett. 2021;9(1). https://doi.org/10.1186/s40486-021-00131-6.

Karm IFA, Dwaish AS, Dakhil OAA. Algae extracts as reduction agents for biosynthesis of silver nanoparticles for alternative medicinal compounds. Eurasian Chem Commun. 2022;4:910–20.

Google Scholar 

Bawazeer S, Rauf A, Shah SUA, Shawky AM, Al-Awthan YS, Bahattab OS, Uddin G, Sabir J, El-Esawi MA. Green synthesis of silver nanoparticles using Tropaeolum majus: phytochemical screening and antibacterial studies. Green Process Synth. 2021;10(1):85–94. https://doi.org/10.1515/gps-2021-0003.

Article  CAS  Google Scholar 

Vidyasagar N, Patel RR, Singh SK, Singh M. Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity. Mater Adv. 2023;4(8):1831–49. https://doi.org/10.1039/d2ma01105k.

Article  CAS  Google Scholar 

Farjadian F, Akbarizadeh AR, Tayebi L. Synthesis of novel reducing agent for formation of metronidazole-capped silver nanoparticle and evaluating antibacterial efficiency in gram-positive and gram-negative bacteria. Heliyon. 2020;6(8):e04747. https://doi.org/10.1016/j.heliyon.2020.e04747.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohammadi SS, Ghasemi N, Ramezani M. Bio-fabrication of silver nanoparticles using naturally available wild herbaceous plant and its antibacterial activity. Eurasian Chem Commun. 2020;2(1):87–102. https://doi.org/10.33945/SAMI/ECC.2020.1.10.

Article  CAS  Google Scholar 

Khojasteh-Taheri R, Ghasemi A, Meshkat Z, Sabouri Z, Mohtashami M, Darroudi M. Green synthesis of silver nanoparticles using Salvadora persica and Caccinia macranthera extracts: cytotoxicity analysis and antimicrobial activity against antibiotic-resistant bacteria. Appl Biochem Biotechnol. 2023;195(8):5120–35.

Article  CAS  PubMed  Google Scholar 

Torabian F, Akhavan Rezayat A, Ghasemi Nour M, Ghorbanzadeh A, Najafi S, Sahebkar A, ... Darroudi M. Administration of silver nanoparticles in diabetes mellitus: a systematic review and meta-analysis on animal studies. Biol Trace Element Res. 2022;200(4), 1699–1709.

Erbaş E, Gelen V, Kara H, Gedikli S, Yeşildağ A, Özkanlar S, Akarsu SA. Silver nanoparticles loaded with oleuropein reduce doxorubicin-induced testicular damage by regulating endoplasmic reticulum stress, and apoptosis. Biol Trace Elem Res. 2024. https://doi.org/10.1007/s12011-024-04058-y.

Article  PubMed  PubMed Central  Google Scholar 

Saad EA, Hassan HA, Ghoneum MH, El-Dein MA. Edible wild plants, chicory and purslane, alleviated diabetic testicular dysfunction, and insulin resistance via suppression 8OHdg and oxidative stress in rats. PLoS One. 2024;19(4 April):1–29. https://doi.org/10.1371/journal.pone.0301454.

Article  CAS  Google Scholar 

Selvam K, et al. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. J Radiat Res Appl Sci. 2017;10(1):6–12. https://doi.org/10.1016/j.jrras.2016.02.005.

Article  CAS  Google Scholar 

Jain S, Mehata MS. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep. 2017;7(1):1–13. https://doi.org/10.1038/s41598-017-15724-8.

Article  CAS  Google Scholar 

Singh AK, Kumar P, Mishra SK, et al. A dual therapeutic approach to diabetes mellitus via bioactive phytochemicals found in a poly herbal extract by restoration of favorable gut flora and related short-chain fatty acids. Appl Biochem Biotechnol. 2024. https://doi.org/10.1007/s12010-024-04879-6.

Azimi F, Mahmoudi F, Mahmoudi F, Amini MM. Synthesis of silver nanoparticles by Galega officinalis and its hypoglycemic effects in type 1 diabetic rats. Nanomedicine J. 2021;8(4):255–63. https://doi.org/10.22038/NMJ.2021.59391.1613.

Article  CAS  Google Scholar 

Kumar J, Haldar C, Verma R. Melatonin ameliorates LPS-induced testicular nitro-oxidative stress (iNOS/TNFα) and inflammation (NF-kB/COX-2) via modulation of SIRT-1. Reprod Sci. 2021;28(12):3417–30. https://doi.org/10.1007/s43032-021-00597-0.

Comments (0)

No login
gif