Wang S, Zhang K, Yao Y, Li J, Deng S. Bacterial infections affect male fertility: a focus on the oxidative stress-autophagy axis. Front Cell Dev Biol. 2021;9(October):1–15. https://doi.org/10.3389/fcell.2021.727812.
Oghbaei H et al. “Effects of bacteria on male fertility: spermatogenesis and sperm function.” Life Sci. 2020;256. https://doi.org/10.1016/j.lfs.2020.117891.
Marchiani S, et al. Effects of common Gram-negative pathogens causing male genitourinary-tract infections on human sperm functions. Sci Rep. 2021;11(1):1–10. https://doi.org/10.1038/s41598-021-98710-5.
Azenabor A, et al. Impact of inflammation on male reproductive tract. J Reprod Infertil. 2015;16(3):123–9.
PubMed PubMed Central Google Scholar
Bertani B, Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018;8(1):1–33. https://doi.org/10.1128/ecosalplus.esp-0001-2018.
Nishio K, et al. Attenuation of lipopolysaccharide (LPS)-induced cytotoxicity by tocopherols and tocotrienols. Redox Biol. 2013;1(1):97–103. https://doi.org/10.1016/j.redox.2012.10.002.
Article CAS PubMed PubMed Central Google Scholar
Duque GA, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5(OCT):1–12. https://doi.org/10.3389/fimmu.2014.00491.
Ahmad SM, Hoot SB, Qazi PH, Verma V. Phylogenetic patterns and genetic diversity of Indian Tinospora species based on chloroplast sequence data and cytochrome P450 polymorphisms. Plant Syst Evol. 2009;281(1–2):87–96. https://doi.org/10.1007/s00606-009-0189-1.
Meena AK, Singh A, Panda P, Mishra S, Rao MM. “Tinospora cordifolia: its bioactivities and evaluation of physicochemical properties.” Int J Pharmacogn Phytochem Res. 2010;2(2) 50–55. [Online]. Available: www.ijppr.com.
Mehra R, Naved T, Arora M, Madan S. Standardization and evaluation of formulation parameters of Tinospora cordifolia tablet. J Adv Pharm Educ Res. 2013;3(4):440–9.
Agarwal S, Ramamurthy P, Fernandes B, Rath A, Sidhu P. Assessment of antimicrobial activity of different concentrations of Tinospora cordifolia against Streptococcus mutans: an in vitro study. Dent Res J (Isfahan). 2019;16(1):24–8. https://doi.org/10.4103/1735-3327.249556.
Alexander CP, Kirubakaran CJW, Michael RD. Water soluble fraction of Tinospora cordifolia leaves enhanced the non-specific immune mechanisms and disease resistance in Oreochromis mossambicus. Fish Shellfish Immunol. 2010;29(5):765–72. https://doi.org/10.1016/j.fsi.2010.07.003.
Patil KG. Antidiabetic activity of Tinospora cordifolia (fam: Menispermaceae) in alloxan treated albino rats. Appl Res J. 2015;1(5):316–9.
Patgiri B, Umretia B, Vaishnav P, Prajapati P, Shukla V, Ravishankar B. Anti-inflammatory activity of Guduchi Ghana (aqueous extract of Tinospora cordifolia Miers.). AYU (An Int Q J Res Ayurveda). 2014;35(1):108. https://doi.org/10.4103/0974-8520.141958.
Saha J, Begum A, Mukherjee A, Kumar S. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of methylene blue dye. Sustain Environ Res. 2017;27(5):245–50. https://doi.org/10.1016/j.serj.2017.04.003.
Zaid Almarbd Z, Mutter Abbass N. Synthesis and characterization of TiO2, Ag2O, and graphene oxide nanoparticles with polystyrene as a nonocomposites and some of their applications. Eurasian Chem Commun. 2022;4(10):1033–43. https://doi.org/10.22034/ecc.2022.342801.1469.
Sabouri Z, Oskuee RK, Sabouri S, Moghaddas SSTH, Samarghandian S, Abdulabbas HS, Darroudi M. Phytoextract-mediated synthesis of Ag-doped ZnO–MgO–CaO nanocomposite using Ocimum basilicum L seeds extract as a highly efficient photocatalyst and evaluation of their biological effects. Ceram Int. 2023;49(12):20989–97.
Sabouri Z, Sabouri M, Moghaddas SSTH, et al. Plant-mediated synthesis of Ag and Se dual-doped ZnO-CaO-CuO nanocomposite using Nymphaea alba L. extract: assessment of their photocatalytic and biological properties. Biomass Conv Bioref. 2023. https://doi.org/10.1007/s13399-023-04984-2.
Kareem TA, Mahdi DK. Synthesis and characterization of silver nanoparticles-doped mesoporous bioactive glass prepared by spray pyrolysis. Eurasian Chem Commun. 2022;4(4):330337. http://www.echemcom.com/article_145019.html.
Sabouri Z, Sammak S, Sabouri S, Moghaddas SSTH, Darroudi M. Green synthesis of Ag-Se doped ZnO-Co3O4-NiO fivenary nanocomposite using poly anionic cellulose and evaluation of their anticancer and photocatalyst applications. Chem Methodol. 2024;8(3):164–76.
Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M. Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J Colloid Interface Sci. 2016;470:268–75. https://doi.org/10.1016/j.jcis.2016.02.060.
Article CAS PubMed Google Scholar
Kalwar K, Shan D. Antimicrobial effect of silver nanoparticles (AgNPs) and their mechanism – a mini review. Micro Nano Lett. 2018;13(3):277–80. https://doi.org/10.1049/mnl.2017.0648.
Roy P, Das B, Mohanty A, Mohapatra S. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl Nanosci. 2017;7(8):843–50. https://doi.org/10.1007/s13204-017-0621-8.
Jain N, Jain P, Rajput D, Patil UK. “Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity.” Micro Nano Syst Lett. 2021;9(1). https://doi.org/10.1186/s40486-021-00131-6.
Karm IFA, Dwaish AS, Dakhil OAA. Algae extracts as reduction agents for biosynthesis of silver nanoparticles for alternative medicinal compounds. Eurasian Chem Commun. 2022;4:910–20.
Bawazeer S, Rauf A, Shah SUA, Shawky AM, Al-Awthan YS, Bahattab OS, Uddin G, Sabir J, El-Esawi MA. Green synthesis of silver nanoparticles using Tropaeolum majus: phytochemical screening and antibacterial studies. Green Process Synth. 2021;10(1):85–94. https://doi.org/10.1515/gps-2021-0003.
Vidyasagar N, Patel RR, Singh SK, Singh M. Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity. Mater Adv. 2023;4(8):1831–49. https://doi.org/10.1039/d2ma01105k.
Farjadian F, Akbarizadeh AR, Tayebi L. Synthesis of novel reducing agent for formation of metronidazole-capped silver nanoparticle and evaluating antibacterial efficiency in gram-positive and gram-negative bacteria. Heliyon. 2020;6(8):e04747. https://doi.org/10.1016/j.heliyon.2020.e04747.
Article CAS PubMed PubMed Central Google Scholar
Mohammadi SS, Ghasemi N, Ramezani M. Bio-fabrication of silver nanoparticles using naturally available wild herbaceous plant and its antibacterial activity. Eurasian Chem Commun. 2020;2(1):87–102. https://doi.org/10.33945/SAMI/ECC.2020.1.10.
Khojasteh-Taheri R, Ghasemi A, Meshkat Z, Sabouri Z, Mohtashami M, Darroudi M. Green synthesis of silver nanoparticles using Salvadora persica and Caccinia macranthera extracts: cytotoxicity analysis and antimicrobial activity against antibiotic-resistant bacteria. Appl Biochem Biotechnol. 2023;195(8):5120–35.
Article CAS PubMed Google Scholar
Torabian F, Akhavan Rezayat A, Ghasemi Nour M, Ghorbanzadeh A, Najafi S, Sahebkar A, ... Darroudi M. Administration of silver nanoparticles in diabetes mellitus: a systematic review and meta-analysis on animal studies. Biol Trace Element Res. 2022;200(4), 1699–1709.
Erbaş E, Gelen V, Kara H, Gedikli S, Yeşildağ A, Özkanlar S, Akarsu SA. Silver nanoparticles loaded with oleuropein reduce doxorubicin-induced testicular damage by regulating endoplasmic reticulum stress, and apoptosis. Biol Trace Elem Res. 2024. https://doi.org/10.1007/s12011-024-04058-y.
Article PubMed PubMed Central Google Scholar
Saad EA, Hassan HA, Ghoneum MH, El-Dein MA. Edible wild plants, chicory and purslane, alleviated diabetic testicular dysfunction, and insulin resistance via suppression 8OHdg and oxidative stress in rats. PLoS One. 2024;19(4 April):1–29. https://doi.org/10.1371/journal.pone.0301454.
Selvam K, et al. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. J Radiat Res Appl Sci. 2017;10(1):6–12. https://doi.org/10.1016/j.jrras.2016.02.005.
Jain S, Mehata MS. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep. 2017;7(1):1–13. https://doi.org/10.1038/s41598-017-15724-8.
Singh AK, Kumar P, Mishra SK, et al. A dual therapeutic approach to diabetes mellitus via bioactive phytochemicals found in a poly herbal extract by restoration of favorable gut flora and related short-chain fatty acids. Appl Biochem Biotechnol. 2024. https://doi.org/10.1007/s12010-024-04879-6.
Azimi F, Mahmoudi F, Mahmoudi F, Amini MM. Synthesis of silver nanoparticles by Galega officinalis and its hypoglycemic effects in type 1 diabetic rats. Nanomedicine J. 2021;8(4):255–63. https://doi.org/10.22038/NMJ.2021.59391.1613.
Kumar J, Haldar C, Verma R. Melatonin ameliorates LPS-induced testicular nitro-oxidative stress (iNOS/TNFα) and inflammation (NF-kB/COX-2) via modulation of SIRT-1. Reprod Sci. 2021;28(12):3417–30. https://doi.org/10.1007/s43032-021-00597-0.
Comments (0)