Implications of Biomaterials and Adipose-Derived Stem Cells in the Management of Calvarial Bone Defects

Szpalski C, Barr J, Wetterau M, et al. Cranial bone defects: current and future strategies. FOC. 2010;29:E8.

Article  Google Scholar 

Huang EE, Zhang N, Shen H, et al. Novel techniques and future perspective for investigating critical-size bone defects. Bioengineering. 2022;9:171.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thurairajah K, Briggs GD, Balogh ZJ. Stem cell therapy for fracture non-union: the current evidence from human studies. J Orthop Surg (Hong Kong). 2021;29:230949902110365.

Article  Google Scholar 

Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36:S20–7.

Article  PubMed  Google Scholar 

Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8:114–24.

Article  PubMed  PubMed Central  Google Scholar 

Ng VY. Risk of disease transmission with bone allograft. Orthopedics. 2012;35:679–81.

Article  PubMed  Google Scholar 

Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85:3–10.

Article  PubMed  Google Scholar 

Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCormick JB, Huso HA. Stem cells and ethics: current issues. J of Cardiovasc Trans Res. 2010;3:122–7.

Article  Google Scholar 

Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116:639–48.

Article  CAS  PubMed  Google Scholar 

Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241:58–62.

Article  CAS  PubMed  Google Scholar 

Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

Article  CAS  PubMed  Google Scholar 

Meirelles L da S, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119:2204–2213.

Ding D-C, Shyu W-C, Lin S-Z. Mesenchymal stem cells. Cell Transplant. 2011;20:5–14.

Article  PubMed  Google Scholar 

Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

Article  CAS  PubMed  Google Scholar 

Tsuji W. Adipose-derived stem cells: implications in tissue regeneration. WJSC. 2014;6:312.

Article  PubMed  PubMed Central  Google Scholar 

Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Raff M, editor. MBoC. 2002;13:4279–4295.

Temple JP, Hutton DL, Hung BP, et al. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds: engineering anatomically shaped vascularized bone grafts. J Biomed Mater Res. 2014;n/a-n/a. https://doi.org/10.1002/jbm.a.35107

Wang Z, Han L, Sun T, et al. Osteogenic and angiogenic lineage differentiated adipose-derived stem cells for bone regeneration of calvarial defects in rabbits. J Biomed Mater Res. 2021;109:538–50.

Article  CAS  Google Scholar 

Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15:641–8.

Article  PubMed  PubMed Central  Google Scholar 

Chun SY, Lim JO, Lee EH, et al. Preparation and characterization of human adipose tissue-derived extracellular matrix, growth factors, and stem cells: a concise review. Tissue Eng Regen Med. 2019;16:385–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satilmis B, Cicek GS, Cicek E, et al. Adipose-derived stem cells in the treatment of hepatobiliary diseases and sepsis. WJCC. 2022;10:4348–56.

Article  PubMed  PubMed Central  Google Scholar 

Department of Orthopaedic Surgery. Orthopaedic Research Laboratories, Children’s Hospital Boston, Boston MA, USA, Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. eCM. 2008;15:53–76.

Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, et al. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther. 2020;11:492.

Article  PubMed  PubMed Central  Google Scholar 

Ratnayake JTB, Mucalo M, Dias GJ. Substituted hydroxyapatites for bone regeneration: a review of current trends: substituted HA for bone regeneration. J Biomed Mater Res. 2017;105:1285–99.

Article  CAS  Google Scholar 

Adamopoulos O, Papadopoulos T. Nanostructured bioceramics for maxillofacial applications. J Mater Sci: Mater Med. 2007;18:1587–97.

CAS  PubMed  Google Scholar 

Krishnamurithy G, Murali MR, Hamdi M, et al. Proliferation and osteogenic differentiation of mesenchymal stromal cells in a novel porous hydroxyapatite scaffold. Regen Med. 2015;10:579–90.

Article  CAS  PubMed  Google Scholar 

Zimmermann A, Pelegrine A, Peruzzo D, et al. Adipose mesenchymal stem cells associated with xenograft in a guided bone regeneration model: a histomorphometric study in rabbit calvaria. Int J Oral Maxillofac Implants. 2015;30:1415–22.

Article  PubMed  Google Scholar 

Choi JW, Park EJ, Shin HS, et al. In vivo differentiation of undifferentiated human adipose tissue-derived mesenchymal stem cells in critical-sized calvarial bone defects. Ann Plast Surg. 2014;72:225–33.

Article  CAS  PubMed  Google Scholar 

Zhang J, Dalbay MT, Luo X, et al. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis. Acta Biomater. 2017;57:487–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rojbani H, Nyan M, Ohya K, et al. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res. 2011;98A:488–98.

Article  CAS  Google Scholar 

Adie S, Harris IA, Naylor JM, et al. Pulsed electromagnetic field stimulation for acute tibial shaft fractures: a multicenter, double-blind, randomized trial. J Bone Joint Surg. 2011;93:1569–76.

Article  PubMed  Google Scholar 

de Haas WG, Beaupré A, Cameron H, et al. The Canadian experience with pulsed magnetic fields in the treatment of ununited tibial fractures. Clin Orthop Relat Res. 1986;55–58. https://doi.org/10.1097/00003086-198607000-00011

Midura RJ, Ibiwoye MO, Powell KA, et al. Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J Orthop Res. 2005;23:1035–46.

Article  PubMed  Google Scholar 

Liang H, Liu X, Pi Y, et al. 3D-printed β-tricalcium phosphate scaffold combined with a pulse electromagnetic field promotes the repair of skull defects in rats. ACS Biomater Sci Eng. 2019;5:5359–67.

Article  CAS  PubMed  Google Scholar 

Lappalainen O-P, Karhula S, Haapea M, et al. Bone healing in rabbit calvarial critical-sized defects filled with stem cells and growth factors combined with granular or solid scaffolds. Childs Nerv Syst. 2016;32:681–8.

Article  PubMed  Google Scholar 

Neda A, Sara S, Maziar MK, et al. Copper / cobalt doped strontium-bioactive glasses for bone tissue engineering applications. Open Ceramics. 2023;14:100358.

Article  Google Scholar 

Lingtian W, Ping H, Han J, et al. Mild hyperthermia-mediated osteogenesis and angiogenesis play a critical role in magnetothermal composite-induced bone regeneration. Nano Today. 2022;43:101401.

Article  Google Scholar 

Kaou MH, Furkó M, Balázsi K, et al. Advanced bioactive glasses: the newest achievements and breakthroughs in the area. Nanomaterials. 2023;13(16):2287.

Comments (0)

No login
gif