Bertram G., Bell H.A., Ritchie D.W., Fullerton G., Stansfield I. 2000. Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. RNA. 6, 1236–1247.
Article CAS PubMed PubMed Central Google Scholar
Frolova L., Seit-Nebi A., Kisselev L. 2002. Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. RNA. 8, 129–136.
Article CAS PubMed PubMed Central Google Scholar
Bulygin K.N., Khairulina Y.S., Kolosov P.M., Ven’yaminova A.G., Graifer D.M., Vorobjev Y.N., Frolova L.Y., Kisselev L.L., Karpova G.G. 2010. Three distinct peptides from the N domain of translation termination factor eRF1 surround stop codon in the ribosome. RNA. 16, 1902–1914.
Article CAS PubMed PubMed Central Google Scholar
Bulygin K.N., Khairulina Y.S., Kolosov P.M., Venꞌyaminova A.G., Graifer D.M., Vorobjev Y.N., Frolova L.Y., Karpova G.G. 2011. Adenine and guanine recognition of stop codon is mediated by different N domain conformations of translation termination factor eRF1. Nucleic Acids Res. 39, 7134–7146.
Article CAS PubMed PubMed Central Google Scholar
Kryuchkova P., Grishin A., Eliseev B., Karyagina A., Frolova L., Alkalaeva E. 2013. Two-step model of stop codon recognition by eukaryotic release factor eRF1. Nucleic Acids Res. 41, 4573–4586.
Article CAS PubMed PubMed Central Google Scholar
Brown A., Shao S., Murray J., Hegde R.S., Ramakrishnan V. 2015. Structural basis for stop codon recognition in eukaryotes. Nature. 524, 493–496.
Article CAS PubMed PubMed Central Google Scholar
Frolova L.Y., Tsivkovskii R.Y., Sivolobova G.F., Oparina N.Y., Serpinsky O.I., Blinov V.M., Tatkov S.I., Kisselev L.L. 1999. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA. 5, 1014–1020.
Article CAS PubMed PubMed Central Google Scholar
Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M. 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14, 4065–4072.
Article CAS PubMed PubMed Central Google Scholar
Frolova L., Le Goff X., Zhouravleva G., Davydova E., Philippe M., Kisselev L. 1996. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA. 2, 334–341.
CAS PubMed PubMed Central Google Scholar
Stansfield I., Jones K.M., Kushnirov V.V., Dagkesamanskayal A.R., Poznyakovski A., Paushkin S.V., Nierras C.R., Cox B.S., Ter-Avanesyan M.D., Tuite M.F. 1995. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 14, 4365–4373.
Article CAS PubMed PubMed Central Google Scholar
Paushkin S.V., Kushnirov V.V., Smirnov V.N., Ter-Avanesyan M.D. 1997. Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol. Cell. Biol. 17, 2798–2805.
Article CAS PubMed PubMed Central Google Scholar
Ito K., Ebihara K., Nakamura Y. 1998. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA. 4, S1355838298971874.
Merkulova T.I., Frolova L.Y., Lazar M., Camonis J., Kisselev L.L. 1999. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett. 443, 41–47.
Article CAS PubMed Google Scholar
Namy O., Hatin I., Rousset J. 2001. Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep. 2, 787–793.
Article CAS PubMed PubMed Central Google Scholar
Atkins J.F., Loughran G., Bhatt P.R., Firth A.E., Baranov P.V. 2016. Ribosomal frameshifting and transcriptional slippage: from genetic steganography and cryptography to adventitious use. Nucleic Acids Res. 44, 7007–7078
PubMed PubMed Central Google Scholar
Rodnina M.V., Korniy N., Klimova M., Karki P., Peng B.-Z., Senyushkina T., Belardinelli R., Maracci C., Wohlgemuth I., Samatova E., Peske F. 2020. Translational recoding: Canonical translation mechanisms reinterpreted. Nucleic Acids Res. 48, 1056–1067.
Article CAS PubMed Google Scholar
Brogna S., Wen J. 2009. Nonsense-mediated mRNA decay (NMD) mechanisms. Nat. Struct. Mol. Biol. 16, 107–113.
Article CAS PubMed Google Scholar
Chabelskaya S.V., Zhouravleva G.A. 2010. Mutations in the SUP35 gene impair nonsense-mediated mRNA decay. Mol. Biol. (Moscow). 44, 45–53. https://doi.org/10.1134/S0026893310010073
Schweingruber C., Rufener S.C., Zünd D., Yamashita A., Mühlemann O. 2013. Nonsense-mediated mRNA decay—mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim. Biophys. Acta, Gene Regul. Mech. 1829, 612–623.
Karousis E.D., Gurzeler L.-A., Annibaldis G., Dreos R., Mühlemann O. 2020. Human NMD ensues independently of stable ribosome stalling. Nat. Commun. 11, 4134.
Article CAS PubMed PubMed Central Google Scholar
Yang Q., Yu C.-H., Zhao F., Dang Y., Wu C., Xie P., Sachs M.S., Liu Y. 2019. eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons. Nucleic Acids Res. 47, 9243–9258.
Article CAS PubMed PubMed Central Google Scholar
Wada M., Ito K. 2019. Misdecoding of rare CGA codon by translation termination factors, eRF1/eRF3, suggests novel class of ribosome rescue pathway in S. cerevisiae. FEBS J. 286, 788–802.
Article CAS PubMed Google Scholar
Dever T.E., Ivanov I.P., Sachs M.S. 2020. Conserved upstream open reading frame nascent peptides that control translation. Annu. Rev. Genet. 54, 237–264.
Article CAS PubMed PubMed Central Google Scholar
Bidou L., Allamand V., Rousset J.-P., Namy O. 2012. Sense from nonsense: therapies for premature stop codon diseases. Trends Mol. Med. 18, 679–688.
Article CAS PubMed Google Scholar
Janzen D.M. 2004. The effect of eukaryotic release factor depletion on translation termination in human cell lines. Nucleic Acids Res. 32, 4491–4502.
Article CAS PubMed PubMed Central Google Scholar
Freitag J., Ast J., Bölker M. 2012. Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature. 485, 522–525.
Article CAS PubMed Google Scholar
Schueren F., Lingner T., George R., Hofhuis J., Dickel C., Gärtner J., Thoms S. 2014. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. ELife. 3, e03640
Article PubMed PubMed Central Google Scholar
Hofhuis J., Schueren F., Nötzel C., Lingner T., Gärtner J., Jahn O., Thoms S. 2016. The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code. Open Biol. 6, 160246.
Article PubMed PubMed Central Google Scholar
Svidritskiy E., Demo G., Korostelev A.A. 2018. Mechanism
Comments (0)