Silencing of the S-Phase Kinase-Associated Protein 2 Gene (SKP2) Inhibits Proliferation and Migration of Hepatocellular Carcinoma Cells

Wang C.I., Chu P.M., Chen Y.L., Lin Y.H., Chen C.Y. 2021. Chemotherapeutic drug-regulated cytokines might influence therapeutic efficacy in HCC. Int. J. Mol. Sci. 22 (24), 13627. https://doi.org/10.3390/ijms222413627

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu D., Wang Y., Shen X., Mao T., Liang X., Wang T., Shen W., Zhuang Y., Ding J. 2023. Genetic landscape and clinical significance of cuproptosis-related genes in liver hepatocellular carcinoma. Genes Dis. 11 (2), 516‒519. https://doi.org/10.1016/j.gendis.2023.03.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faivre S., Bouattour M., Raymond E. 2011. Novel molecular therapies in hepatocellular carcinoma. Liver Int. 1, 151‒160. https://doi.org/10.1111/j.1478-3231.2010.02395.x

Article  Google Scholar 

Myojin Y., Hikita H., Sugiyama M., Sasaki Y., Fukumoto K., Sakane S., Makino Y., Takemura N., Yamada R., Shigekawa M., Kodama T., Sakamori R., Kobayashi S., Tatsumi T., Suemizu H., Eguchi H., Kokudo N., Mizokami M., Takehara T. 2021. Hepatic stellate cells in hepatocellular carcinoma promote tumor growth via growth differentiation factor 15 production. Gastroenterology. 160 (5), 1741‒1754.e1716. https://doi.org/10.1053/j.gastro.2020.12.015

Peng J.M., Tseng R.H., Shih T.C., Hsieh S.Y. 2021. CAMK2N1 suppresses hepatoma growth through inhibiting E2F1-mediated cell-cycle signaling. Cancer Lett. 497, 66‒76. https://doi.org/10.1016/j.canlet.2020.10.017

Article  CAS  PubMed  Google Scholar 

Wang J., Xiang Y., Fan M., Fang S., Hua Q. 2023. The ubiquitin-proteasome system in tumor metabolism. Cancers. 15 (8), 599‒621. https://doi.org/10.3390/cancers15082385

Article  CAS  Google Scholar 

Asmamaw M.D., Liu Y., Zheng Y.C., Shi X.J., Liu H.M. 2020. Skp2 in the ubiquitin-proteasome system: a comprehensive review. Med. Res. Rev. 40 (5), 1920‒1949. https://doi.org/10.1002/med.21675

Article  CAS  PubMed  Google Scholar 

Cui H., Arnst K., Miller D.D., Li W. 2020. Recent advances in elucidating paclitaxel resistance mechanisms in non-small cell lung cancer and strategies to overcome drug resistance. Curr. Med. Chem. 27 (39), 6573‒6595. https://doi.org/10.2174/0929867326666191016113631

Hu X., Meng Y., Xu L., Qiu L., Wei M., Su D., Qi X., Wang Z., Yang S., Liu C., Han J. 2019. Cul4 E3 ubiquitin ligase regulates ovarian cancer drug resistance by targeting the antiapoptotic protein BIRC3. Cell Death Dis. 10 (2), 104. https://doi.org/10.1038/s41419-018-1200-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tekcham D.S., Chen D., Liu Y., Ling T., Zhang Y., Chen H., Wang W., Otkur W., Qi H., Xia T., Liu X., Piao H.L., Liu H. 2020. F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Theranostics. 10 (9), 4150‒4167. https://doi.org/10.7150/thno.42735

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng N., Wang Z., Wei W. 2016. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. Int. J. Biochem. Cell Biol. 73, 99‒110. https://doi.org/10.1016/j.biocel.2016.02.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu J., Su H.K., Yu Z.H., Xi S.Y., Guo C.C., Hu Z.Y., Qu Y., Cai H.P., Zhao Y.Y., Zhao H.F., Chen F.R., Huang Y.F., To S.T., Feng B.H., Sai K., Chen Z.P., Wang J. 2020. Skp2 modulates proliferation, senescence and tumorigenesis of glioma. Cancer Cell Int. 20, 71. https://doi.org/10.1186/s12935-020-1144-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X., Huang Z., Wu W., Xia R. 2020. Inhibition of Skp2 sensitizes chronic myeloid leukemia cells to imatinib. Cancer Manage. Res. 12, 4777‒4787. https://doi.org/10.2147/CMAR.S253367

Article  CAS  Google Scholar 

Asmamaw M.D., Zhang L.R., Liu H.M., Shi X.J., Liu Y. 2023. Skp2 is a novel regulator of LSD1 expression and function in gastric cancer. Genes Dis. 10 (6), 2267‒2269. https://doi.org/10.1016/j.gendis.2023.01.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin H., Ruan G.Y., Sun X.Q., Chen X.Y., Zheng X., Sun P.M. 2019. Effects of RNAi-induced Skp2 inhibition on cell cycle, apoptosis and proliferation of endometrial carcinoma cells. Exp. Ther. Med. 17 (5), 3441‒3450. https://doi.org/10.3892/etm.2019.7392

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu J., Zheng X., Li W., Ren L., Li S., Yang Y., Yang H., Ge B., Du G., Shi J., Wang J. 2022. Anti-tumor effects of Skp2 inhibitor AAA-237 on NSCLC by arresting cell cycle at G0/G1 phase and inducing senescence. Pharmacol. Res. 181, 106259. https://doi.org/10.1016/j.phrs.2022.106259

Article  CAS  PubMed  Google Scholar 

Wu T., Gu X., Cui H. 2021. Emerging roles of Skp2 in cancer drug resistance. Cells. 10 (5), 1147. https://doi.org/10.3390/cells10051147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamada S., Yanamoto S., Naruse T., Matsushita Y., Takahashi H., Umeda M., Nemoto T.K., Kurita H. 2016. Skp2 regulates the expression of MMP-2 and MMP-9, and enhances the invasion potential of oral squamous cell carcinoma. Pathol. Oncol. Res. 22 (3), 625‒632. https://doi.org/10.1007/s12253-016-0049-6

Article  CAS  PubMed  Google Scholar 

Zhang M., Zhang L., Hei R., Li X., Cai H., Wu X., Zheng Q., Cai C. 2021. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 11 (5), 1913‒1935.

CAS  PubMed  PubMed Central  Google Scholar 

Lu Z., Hunter T. 2010. Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle. 9 (12), 2342‒2352. https://doi.org/10.4161/cc.9.12.11988

Article  CAS  PubMed  Google Scholar 

Amani J., Gorjizadeh N., Younesi S., Najafi M., Ashrafi A.M., Irian S., Gorjizadeh N., Azizian K. 2021. Cyclin-dependent kinase inhibitors (CDKIs) and the DNA damage response: The link between signaling pathways and cancer. DNA Repair. 102, 103103. https://doi.org/10.1016/j.dnarep.2021.103103

Article  CAS  PubMed  Google Scholar 

Feng T., Wang P., Zhang X. 2024. Skp2: a critical molecule for ubiquitination and its role in cancer. Life Sci. 338, 122409. https://doi.org/10.1016/j.lfs.2023.122409

Article  CAS  PubMed  Google Scholar 

Wei Z., Jiang X., Liu F., Qiao H., Zhou B., Zhai B., Zhang L., Zhang X., Han L., Jiang H., Kris-sansen G.W., Sun X. 2013. Downregulation of Skp2 inhibits the growth and metastasis of gastric cancer cells in vitro and in vivo. Tumour Biol. 34 (1), 181‒192. https://doi.org/10.1007/s13277-012-0527-8

Article  CAS  PubMed  Google Scholar 

Ghosh R., Kaypee S., Shasmal M., Kundu T.K., Roy S., Sengupta J. 2019. Tumor suppressor p53-mediated structural reorganization of the transcriptional coactivator p300. Biochemistry. 58 (32), 3434‒3443. https://doi.org/10.1021/acs.biochem.9b00333

Article  CAS  PubMed  Google Scholar 

Kitagawa M., Lee S.H., McCormick F. 2008. Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Mol. Cell. 29 (2), 217‒231. https://doi.org/10.1016/j.molcel.2007.11.036

Article  CAS  PubMed  Google Scholar 

Davidovich S., Ben-Izhak O., Shapira M., Futerman B., Hershko D.D. 2008. Over-expression of Skp2 is associated with resistance to preoperative doxorubicin-based chemotherapy in primary breast cancer. Breast Cancer Res. 10 (4), R63. https://doi.org/10.1186/bcr2122

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neudorf N.M., Thompson L.L., Lichtensztejn Z., Razi T., McManus K.J. 2022. Reduced Skp2 expression adversely impacts genome stability and promotes cellular transformation in colonic epithelial cells. Cells. 11 (23), 3731. https://doi.org/10.3390/cells11233731

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sumimoto H., Hirata K., Yamagata S., Miyoshi H., Miyagishi M., Taira K., Kawakami Y. 2006. Effective inhibition of cell growth and invasion of melanoma by combined suppression of BRAF (V599E) and Skp2 with lentiviral RNAi. Int. J. Cancer. 118 (2), 472‒476. https://doi.org/10.1002/ijc.21286

Article  CAS

Comments (0)

No login
gif