Wang C.I., Chu P.M., Chen Y.L., Lin Y.H., Chen C.Y. 2021. Chemotherapeutic drug-regulated cytokines might influence therapeutic efficacy in HCC. Int. J. Mol. Sci. 22 (24), 13627. https://doi.org/10.3390/ijms222413627
Article CAS PubMed PubMed Central Google Scholar
Hu D., Wang Y., Shen X., Mao T., Liang X., Wang T., Shen W., Zhuang Y., Ding J. 2023. Genetic landscape and clinical significance of cuproptosis-related genes in liver hepatocellular carcinoma. Genes Dis. 11 (2), 516‒519. https://doi.org/10.1016/j.gendis.2023.03.010
Article CAS PubMed PubMed Central Google Scholar
Faivre S., Bouattour M., Raymond E. 2011. Novel molecular therapies in hepatocellular carcinoma. Liver Int. 1, 151‒160. https://doi.org/10.1111/j.1478-3231.2010.02395.x
Myojin Y., Hikita H., Sugiyama M., Sasaki Y., Fukumoto K., Sakane S., Makino Y., Takemura N., Yamada R., Shigekawa M., Kodama T., Sakamori R., Kobayashi S., Tatsumi T., Suemizu H., Eguchi H., Kokudo N., Mizokami M., Takehara T. 2021. Hepatic stellate cells in hepatocellular carcinoma promote tumor growth via growth differentiation factor 15 production. Gastroenterology. 160 (5), 1741‒1754.e1716. https://doi.org/10.1053/j.gastro.2020.12.015
Peng J.M., Tseng R.H., Shih T.C., Hsieh S.Y. 2021. CAMK2N1 suppresses hepatoma growth through inhibiting E2F1-mediated cell-cycle signaling. Cancer Lett. 497, 66‒76. https://doi.org/10.1016/j.canlet.2020.10.017
Article CAS PubMed Google Scholar
Wang J., Xiang Y., Fan M., Fang S., Hua Q. 2023. The ubiquitin-proteasome system in tumor metabolism. Cancers. 15 (8), 599‒621. https://doi.org/10.3390/cancers15082385
Asmamaw M.D., Liu Y., Zheng Y.C., Shi X.J., Liu H.M. 2020. Skp2 in the ubiquitin-proteasome system: a comprehensive review. Med. Res. Rev. 40 (5), 1920‒1949. https://doi.org/10.1002/med.21675
Article CAS PubMed Google Scholar
Cui H., Arnst K., Miller D.D., Li W. 2020. Recent advances in elucidating paclitaxel resistance mechanisms in non-small cell lung cancer and strategies to overcome drug resistance. Curr. Med. Chem. 27 (39), 6573‒6595. https://doi.org/10.2174/0929867326666191016113631
Hu X., Meng Y., Xu L., Qiu L., Wei M., Su D., Qi X., Wang Z., Yang S., Liu C., Han J. 2019. Cul4 E3 ubiquitin ligase regulates ovarian cancer drug resistance by targeting the antiapoptotic protein BIRC3. Cell Death Dis. 10 (2), 104. https://doi.org/10.1038/s41419-018-1200-y
Article CAS PubMed PubMed Central Google Scholar
Tekcham D.S., Chen D., Liu Y., Ling T., Zhang Y., Chen H., Wang W., Otkur W., Qi H., Xia T., Liu X., Piao H.L., Liu H. 2020. F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Theranostics. 10 (9), 4150‒4167. https://doi.org/10.7150/thno.42735
Article CAS PubMed PubMed Central Google Scholar
Zheng N., Wang Z., Wei W. 2016. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. Int. J. Biochem. Cell Biol. 73, 99‒110. https://doi.org/10.1016/j.biocel.2016.02.005
Article CAS PubMed PubMed Central Google Scholar
Wu J., Su H.K., Yu Z.H., Xi S.Y., Guo C.C., Hu Z.Y., Qu Y., Cai H.P., Zhao Y.Y., Zhao H.F., Chen F.R., Huang Y.F., To S.T., Feng B.H., Sai K., Chen Z.P., Wang J. 2020. Skp2 modulates proliferation, senescence and tumorigenesis of glioma. Cancer Cell Int. 20, 71. https://doi.org/10.1186/s12935-020-1144-z
Article CAS PubMed PubMed Central Google Scholar
Chen X., Huang Z., Wu W., Xia R. 2020. Inhibition of Skp2 sensitizes chronic myeloid leukemia cells to imatinib. Cancer Manage. Res. 12, 4777‒4787. https://doi.org/10.2147/CMAR.S253367
Asmamaw M.D., Zhang L.R., Liu H.M., Shi X.J., Liu Y. 2023. Skp2 is a novel regulator of LSD1 expression and function in gastric cancer. Genes Dis. 10 (6), 2267‒2269. https://doi.org/10.1016/j.gendis.2023.01.015
Article CAS PubMed PubMed Central Google Scholar
Lin H., Ruan G.Y., Sun X.Q., Chen X.Y., Zheng X., Sun P.M. 2019. Effects of RNAi-induced Skp2 inhibition on cell cycle, apoptosis and proliferation of endometrial carcinoma cells. Exp. Ther. Med. 17 (5), 3441‒3450. https://doi.org/10.3892/etm.2019.7392
Article CAS PubMed PubMed Central Google Scholar
Liu J., Zheng X., Li W., Ren L., Li S., Yang Y., Yang H., Ge B., Du G., Shi J., Wang J. 2022. Anti-tumor effects of Skp2 inhibitor AAA-237 on NSCLC by arresting cell cycle at G0/G1 phase and inducing senescence. Pharmacol. Res. 181, 106259. https://doi.org/10.1016/j.phrs.2022.106259
Article CAS PubMed Google Scholar
Wu T., Gu X., Cui H. 2021. Emerging roles of Skp2 in cancer drug resistance. Cells. 10 (5), 1147. https://doi.org/10.3390/cells10051147
Article CAS PubMed PubMed Central Google Scholar
Yamada S., Yanamoto S., Naruse T., Matsushita Y., Takahashi H., Umeda M., Nemoto T.K., Kurita H. 2016. Skp2 regulates the expression of MMP-2 and MMP-9, and enhances the invasion potential of oral squamous cell carcinoma. Pathol. Oncol. Res. 22 (3), 625‒632. https://doi.org/10.1007/s12253-016-0049-6
Article CAS PubMed Google Scholar
Zhang M., Zhang L., Hei R., Li X., Cai H., Wu X., Zheng Q., Cai C. 2021. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 11 (5), 1913‒1935.
CAS PubMed PubMed Central Google Scholar
Lu Z., Hunter T. 2010. Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle. 9 (12), 2342‒2352. https://doi.org/10.4161/cc.9.12.11988
Article CAS PubMed Google Scholar
Amani J., Gorjizadeh N., Younesi S., Najafi M., Ashrafi A.M., Irian S., Gorjizadeh N., Azizian K. 2021. Cyclin-dependent kinase inhibitors (CDKIs) and the DNA damage response: The link between signaling pathways and cancer. DNA Repair. 102, 103103. https://doi.org/10.1016/j.dnarep.2021.103103
Article CAS PubMed Google Scholar
Feng T., Wang P., Zhang X. 2024. Skp2: a critical molecule for ubiquitination and its role in cancer. Life Sci. 338, 122409. https://doi.org/10.1016/j.lfs.2023.122409
Article CAS PubMed Google Scholar
Wei Z., Jiang X., Liu F., Qiao H., Zhou B., Zhai B., Zhang L., Zhang X., Han L., Jiang H., Kris-sansen G.W., Sun X. 2013. Downregulation of Skp2 inhibits the growth and metastasis of gastric cancer cells in vitro and in vivo. Tumour Biol. 34 (1), 181‒192. https://doi.org/10.1007/s13277-012-0527-8
Article CAS PubMed Google Scholar
Ghosh R., Kaypee S., Shasmal M., Kundu T.K., Roy S., Sengupta J. 2019. Tumor suppressor p53-mediated structural reorganization of the transcriptional coactivator p300. Biochemistry. 58 (32), 3434‒3443. https://doi.org/10.1021/acs.biochem.9b00333
Article CAS PubMed Google Scholar
Kitagawa M., Lee S.H., McCormick F. 2008. Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Mol. Cell. 29 (2), 217‒231. https://doi.org/10.1016/j.molcel.2007.11.036
Article CAS PubMed Google Scholar
Davidovich S., Ben-Izhak O., Shapira M., Futerman B., Hershko D.D. 2008. Over-expression of Skp2 is associated with resistance to preoperative doxorubicin-based chemotherapy in primary breast cancer. Breast Cancer Res. 10 (4), R63. https://doi.org/10.1186/bcr2122
Article CAS PubMed PubMed Central Google Scholar
Neudorf N.M., Thompson L.L., Lichtensztejn Z., Razi T., McManus K.J. 2022. Reduced Skp2 expression adversely impacts genome stability and promotes cellular transformation in colonic epithelial cells. Cells. 11 (23), 3731. https://doi.org/10.3390/cells11233731
Article CAS PubMed PubMed Central Google Scholar
Sumimoto H., Hirata K., Yamagata S., Miyoshi H., Miyagishi M., Taira K., Kawakami Y. 2006. Effective inhibition of cell growth and invasion of melanoma by combined suppression of BRAF (V599E) and Skp2 with lentiviral RNAi. Int. J. Cancer. 118 (2), 472‒476. https://doi.org/10.1002/ijc.21286
Comments (0)