Ashraf M.A. 2020. Phytochemicals as potential anticancer drugs: Time to ponder nature’s bounty. Biomed. Res. Int. 2020, 8602879.
Article PubMed PubMed Central Google Scholar
World Health Organization. 2022. Cancer. https:// www.who.int/news-room/fact-sheets/detail/cancer. Accessed October 10, 2023.
Newman D.J., Cragg G.M. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311–335.
Article CAS PubMed PubMed Central Google Scholar
Catalgol B., Batirel S., Taga Y., Ozer N.K. 2012. Resveratrol: french paradox revisited. Front. Pharmacol. 3, 141.
Article CAS PubMed PubMed Central Google Scholar
Gomez L.S., Zancan P., Marcondes M.C., Ramos-Santos L., Meyer-Fernandes J.R., Sola-Penna M., da Silva D. 2013. Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase. Biochimie. 95, 1336–1343.
Article CAS PubMed Google Scholar
Brockmueller A., Sameri S., Liskova A., Zhai K., Varghese E., Samuel S.M., Büsselberg D., Kubatka P., Shakibaei M. 2021. Resveratrol’s anti-cancer effects through the modulation of tumor glucose metabolism. Cancers. 13, 188.
Article CAS PubMed PubMed Central Google Scholar
Saunier E., Antonio S., Regazzetti A., Auzeil N., Laprévote O., Shay J.W., Coumoul X., Barouki R., Benelli C., Huc-Lemarié L., Bortoli S. 2017. Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells. Sci. Rep. 7, 1–16.
Vanamala J., Radhakrishnan S., Reddivari L., Bhat V.B., Ptitsyn A. 2011. Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways—a proteomic approach. Proteome Sci. 9, 49.
Article CAS PubMed PubMed Central Google Scholar
Dai W., Wang F., Lu J., Xia Y., He L., Chen K., Li J., Li S., Liu T., Zheng Y., Wang J., Lu W., Zhou Y., Yin Q., Abudumijiti H., Chen R., Zhang R., Zhou L., Zhou Z., Zhu R., Yang J., Wang C., Zhang H., Zhou Y., Xu L., Guo C. 2015. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget. 6,13703–13717.
Article PubMed PubMed Central Google Scholar
Narayanan N.K., Narayanan B.A., Nixon D.W. 2004. Resveratrol-induced cell growth inhibition and apoptosis is associated with modulation of phosphoglycerate mutase B in human prostate cancer cells: Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry evaluation. Cancer Detect. Prev. 28, 443–452.
Article CAS PubMed Google Scholar
Warburg O. 1956. On the origin of cancer cells. Science. 123, 309–314.
Article CAS PubMed Google Scholar
Montgomerie J.Z., Garcy R.W., Holshuh H.J., Keyser A.J., Bennett C.J., Schick D.G. 1997. The 28K protein in urinary bladder, squamous metaplasia and urine is triosephosphate isomerase. Clin. Biochem. 30, 613–618.
Article CAS PubMed Google Scholar
Altenberg B., Greulich K.O. 2004. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 84, 1014–1020.
Article CAS PubMed Google Scholar
Liu B.H.M., Tey S.K., Mao X., Ma A.P.Y., Yeung C.L.S., Wong S.W.K., Ng T.H., Xu Y., Yao Y., Fung E.Y.M., Tan K.V., Khong P.L., Ho D.W.H., Ng I.O.L., Tang A.H.N., Cai S.H., Yun J.P., Yam J.W.P. 2021. TPI-reduced extracellular vesicles mediated by Rab20 downregulation promote aerobic glycolysis to drive hepatocarcinogenesis. J. Extracell. Vesicles. 10, e12135.
Article CAS PubMed PubMed Central Google Scholar
Liu P., Sun S.J., Ai Y.J., Feng X., Zheng Y.M., Gao Y., Zhang J.Y., Zhang L., Sun Y.P., Xiong Y., Lin M., Yuan H.X. 2022. Elevated nuclear localization of glycolytic enzyme TPI1 promotes lung adenocarcinoma and enhances chemoresistance. Cell Death Dis. 13, 205
Article CAS PubMed PubMed Central Google Scholar
Pekel G., Ari F. 2020. Therapeutic targeting of cancer metabolism with triosephosphate isomerase. Chem. Biodiversity. 17, e2000012.
Gatenby R.A., Gillies R.J. 2004. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer. 4, 891–899.
Article CAS PubMed Google Scholar
Sakamoto T., Niiya D., Seiki M. 2011. Targeting the Warburg effect that arises in tumor cells expressing membrane type-1 matrix metalloproteinase. J. Biol. Chem. 286, 14691–14704.
Article CAS PubMed PubMed Central Google Scholar
Akgun O., Erkisa M., Ari F. 2019. Effective and new potent drug combination: histone deacetylase and Wnt/β-catenin pathway inhibitors in lung carcinoma cells. J. Cell Biochem. 120, 15467–15482.
Article CAS PubMed Google Scholar
Chen T., Huang Z., Tian Y., Wang H., Ouyang P., Chen H., Wu L., Lin B., He R. 2017. Role of triosephosphate isomerase and downstream functional genes on gastric cancer. Oncol. Rep. 38, 1822–32.
Article CAS PubMed Google Scholar
Lone S.N., Maqbool R., Parray F.Q., Ul Hussain M. 2018. Triose-phosphate isomerase is a novel target of miR-22 and miR-28, with implications in tumorigenesis. J. Cell. Physiol. 233, 8919–8929.
Article CAS PubMed Google Scholar
Jin X., Wang D., Lei M., Guo Y., Cui Y., Chen F., Sun W., Chen X. 2022. TPI1 activates the PI3K/AKT/mTOR signaling pathway to induce breast cancer progression by stabilizing CDCA5. J. Transl. Med. 20, 191.
Article CAS PubMed PubMed Central Google Scholar
Schmidt B., Ferreira C., Passos C.L.A., Silva J.L., Fialho E. 2020. Resveratrol, curcumin and piperine alter human glyoxalase 1 in MCF-7 breast cancer cells. Int. J. Mol. Sci. 21, 5244.
Article PubMed PubMed Central Google Scholar
Özdemir F., Sever A., Keçeci Y.Ö., Incesu Z. 2021. Resveratrol increases the sensitivity of breast cancer MDA-MB-231 cell line to cisplatin by regulating intrinsic apoptosis. Iran. J. Basic Med. Sci. 24, 66–72.
Pozo-Guisado E., Lorenzo-Benayas M.J., Fernandez-Salguero P.M. 2004. Resveratrol modulates the phosphoinositide 3-kinase pathway through an estrogen receptor alpha-dependent mechanism: Relevance in cell proliferation. Int. J. Cancer. 109, 167–173.
Article CAS PubMed Google Scholar
Liang Z.J., Wan Y., Zhu D.D., Wang M.X., Jiang H.M., Huang D.L., Luo L.F., Chen M.J., Yang W.P., Li H.M., Wei C.Y. 2021. Resveratrol mediates the apoptosis of triple negative breast cancer cells by reducing POLD1 expression. Front. Oncol. 11, 569295.
Article CAS PubMed PubMed Central Google Scholar
Sinha D., Sarkar N., Biswas J., Bishayee A. 2015. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin. Cancer Biol. 40-41, 209‒232.
Czajka-Oraniec I., Simpson E.R. 2010. Aromatase research and its clinical significance. Endokrynol. Pol. 61, 126‒134.
de la Cruz-López K.G., Castro-Muñoz L.J., Reyes-Hernández D.O., García-Carrancá A., Manzo-Merino J. 2019. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol. 9, 1143.
Article PubMed PubMed Central Google Scholar
Liu D., Wang D., Wu C., Zhang L., Mei Q., Hu G., Long G., Sun W. 2019. Prognostic significance of serum lactate dehydrogenase in patients with breast cancer: a meta-analysis. Cancer Manage. Res. 11, 3611‒3619.
Le A., Cooper C.R., Gouw A.M., Dinavahi R., Maitra A., Deck L.M., Royer R.E., Vander Jagt D.L., Semenza G.L., Dang C.V. 2010. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. U. S. A. 107, 2037–2042.
Comments (0)