Triosephosphate Isomerase Inhibition by Resveratrol: A New Mechanism of Anti-Glycolysis in Breast Cancer

Ashraf M.A. 2020. Phytochemicals as potential anticancer drugs: Time to ponder nature’s bounty. Biomed. Res. Int. 2020, 8602879.

Article  PubMed  PubMed Central  Google Scholar 

World Health Organization. 2022. Cancer. https:// www.who.int/news-room/fact-sheets/detail/cancer. Accessed October 10, 2023.

Newman D.J., Cragg G.M. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311–335.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Catalgol B., Batirel S., Taga Y., Ozer N.K. 2012. Resveratrol: french paradox revisited. Front. Pharmacol. 3, 141.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomez L.S., Zancan P., Marcondes M.C., Ramos-Santos L., Meyer-Fernandes J.R., Sola-Penna M., da Silva D. 2013. Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase. Biochimie. 95, 1336–1343.

Article  CAS  PubMed  Google Scholar 

Brockmueller A., Sameri S., Liskova A., Zhai K., Varghese E., Samuel S.M., Büsselberg D., Kubatka P., Shakibaei M. 2021. Resveratrol’s anti-cancer effects through the modulation of tumor glucose metabolism. Cancers. 13, 188.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saunier E., Antonio S., Regazzetti A., Auzeil N., Laprévote O., Shay J.W., Coumoul X., Barouki R., Benelli C., Huc-Lemarié L., Bortoli S. 2017. Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells. Sci. Rep. 7, 1–16.

Article  CAS  Google Scholar 

Vanamala J., Radhakrishnan S., Reddivari L., Bhat V.B., Ptitsyn A. 2011. Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways—a proteomic approach. Proteome Sci. 9, 49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai W., Wang F., Lu J., Xia Y., He L., Chen K., Li J., Li S., Liu T., Zheng Y., Wang J., Lu W., Zhou Y., Yin Q., Abudumijiti H., Chen R., Zhang R., Zhou L., Zhou Z., Zhu R., Yang J., Wang C., Zhang H., Zhou Y., Xu L., Guo C. 2015. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget. 6,13703–13717.

Article  PubMed  PubMed Central  Google Scholar 

Narayanan N.K., Narayanan B.A., Nixon D.W. 2004. Resveratrol-induced cell growth inhibition and apoptosis is associated with modulation of phosphoglycerate mutase B in human prostate cancer cells: Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry evaluation. Cancer Detect. Prev. 28, 443–452.

Article  CAS  PubMed  Google Scholar 

Warburg O. 1956. On the origin of cancer cells. Science. 123, 309–314.

Article  CAS  PubMed  Google Scholar 

Montgomerie J.Z., Garcy R.W., Holshuh H.J., Keyser A.J., Bennett C.J., Schick D.G. 1997. The 28K protein in urinary bladder, squamous metaplasia and urine is triosephosphate isomerase. Clin. Biochem. 30, 613–618.

Article  CAS  PubMed  Google Scholar 

Altenberg B., Greulich K.O. 2004. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 84, 1014–1020.

Article  CAS  PubMed  Google Scholar 

Liu B.H.M., Tey S.K., Mao X., Ma A.P.Y., Yeung C.L.S., Wong S.W.K., Ng T.H., Xu Y., Yao Y., Fung E.Y.M., Tan K.V., Khong P.L., Ho D.W.H., Ng I.O.L., Tang A.H.N., Cai S.H., Yun J.P., Yam J.W.P. 2021. TPI-reduced extracellular vesicles mediated by Rab20 downregulation promote aerobic glycolysis to drive hepatocarcinogenesis. J. Extracell. Vesicles. 10, e12135.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu P., Sun S.J., Ai Y.J., Feng X., Zheng Y.M., Gao Y., Zhang J.Y., Zhang L., Sun Y.P., Xiong Y., Lin M., Yuan H.X. 2022. Elevated nuclear localization of glycolytic enzyme TPI1 promotes lung adenocarcinoma and enhances chemoresistance. Cell Death Dis. 13, 205

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pekel G., Ari F. 2020. Therapeutic targeting of cancer metabolism with triosephosphate isomerase. Chem. Biodiversity. 17, e2000012.

Article  CAS  Google Scholar 

Gatenby R.A., Gillies R.J. 2004. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer. 4, 891–899.

Article  CAS  PubMed  Google Scholar 

Sakamoto T., Niiya D., Seiki M. 2011. Targeting the Warburg effect that arises in tumor cells expressing membrane type-1 matrix metalloproteinase. J. Biol. Chem. 286, 14691–14704.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akgun O., Erkisa M., Ari F. 2019. Effective and new potent drug combination: histone deacetylase and Wnt/β-catenin pathway inhibitors in lung carcinoma cells. J. Cell Biochem. 120, 15467–15482.

Article  CAS  PubMed  Google Scholar 

Chen T., Huang Z., Tian Y., Wang H., Ouyang P., Chen H., Wu L., Lin B., He R. 2017. Role of triosephosphate isomerase and downstream functional genes on gastric cancer. Oncol. Rep. 38, 1822–32.

Article  CAS  PubMed  Google Scholar 

Lone S.N., Maqbool R., Parray F.Q., Ul Hussain M. 2018. Triose-phosphate isomerase is a novel target of miR-22 and miR-28, with implications in tumorigenesis. J. Cell. Physiol. 233, 8919–8929.

Article  CAS  PubMed  Google Scholar 

Jin X., Wang D., Lei M., Guo Y., Cui Y., Chen F., Sun W., Chen X. 2022. TPI1 activates the PI3K/AKT/mTOR signaling pathway to induce breast cancer progression by stabilizing CDCA5. J. Transl. Med. 20, 191.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidt B., Ferreira C., Passos C.L.A., Silva J.L., Fialho E. 2020. Resveratrol, curcumin and piperine alter human glyoxalase 1 in MCF-7 breast cancer cells. Int. J. Mol. Sci. 21, 5244.

Article  PubMed  PubMed Central  Google Scholar 

Özdemir F., Sever A., Keçeci Y.Ö., Incesu Z. 2021. Resveratrol increases the sensitivity of breast cancer MDA-MB-231 cell line to cisplatin by regulating intrinsic apoptosis. Iran. J. Basic Med. Sci. 24, 66–72.

PubMed Central  Google Scholar 

Pozo-Guisado E., Lorenzo-Benayas M.J., Fernandez-Salguero P.M. 2004. Resveratrol modulates the phosphoinositide 3-kinase pathway through an estrogen receptor alpha-dependent mechanism: Relevance in cell proliferation. Int. J. Cancer. 109, 167–173.

Article  CAS  PubMed  Google Scholar 

Liang Z.J., Wan Y., Zhu D.D., Wang M.X., Jiang H.M., Huang D.L., Luo L.F., Chen M.J., Yang W.P., Li H.M., Wei C.Y. 2021. Resveratrol mediates the apoptosis of triple negative breast cancer cells by reducing POLD1 expression. Front. Oncol. 11, 569295.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinha D., Sarkar N., Biswas J., Bishayee A. 2015. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin. Cancer Biol. 40-41, 209‒232.

Article  Google Scholar 

Czajka-Oraniec I., Simpson E.R. 2010. Aromatase research and its clinical significance. Endokrynol. Pol. 61, 126‒134.

CAS  PubMed  Google Scholar 

de la Cruz-López K.G., Castro-Muñoz L.J., Reyes-Hernández D.O., García-Carrancá A., Manzo-Merino J. 2019. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol. 9, 1143.

Article  PubMed  PubMed Central  Google Scholar 

Liu D., Wang D., Wu C., Zhang L., Mei Q., Hu G., Long G., Sun W. 2019. Prognostic significance of serum lactate dehydrogenase in patients with breast cancer: a meta-analysis. Cancer Manage. Res. 11, 3611‒3619.

Article  CAS  Google Scholar 

Le A., Cooper C.R., Gouw A.M., Dinavahi R., Maitra A., Deck L.M., Royer R.E., Vander Jagt D.L., Semenza G.L., Dang C.V. 2010. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. U. S. A. 107, 2037–2042.

Comments (0)

No login
gif