GRIP1 is Involved in the Interaction of Vimentin Filaments with Focal Adhesions in Endothelial Cells

Hookway C., Ding L., Davidson M.W., Rappoport J.Z., Danuser G., Gelfand V.I. 2015. Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Mol. Biol. Cell. 26, 1675‒1686.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Forry-Schaudies S., Murray J.M., Toyama Y., Holtzer H. 1986. Effects of colcemid and taxol on microtubules and intermediate filaments in chick embryo fibroblasts. Cell Motil. Cytoskeleton. 6, 324‒338.

Article  CAS  PubMed  Google Scholar 

Gyoeva F.K., Gelfand V.I. 1991. Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. Nature. 353, 445‒448.

Article  CAS  PubMed  Google Scholar 

Robert A., Tian P., Adam S.A., Kittisopikul M., Jaqaman K., Goldman R.D., Gelfand V.I. 2019. Kinesin-dependent transport of keratin filaments: A unified mechanism for intermediate filament transport. FASEB J. 33, 388‒399.

Article  CAS  PubMed  Google Scholar 

Hollenbeck P.J., Bershadsky A.D., Pletjushkina O.Y., Tint I.S., Vasiliev J.M. 1989. Intermediate filament collapse is an ATP-dependent and actin-dependent process. J. Cell Sci. 92, 621‒631.

Article  CAS  PubMed  Google Scholar 

Fu M.M., Holzbaur E.L.F. 2014. Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol. 24, 564‒574.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bershadsky A.B., Tint I.S., Svitkina T.M. 1987. Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts. Cell Motil. Cytoskeleton. 8, 274‒283.

Article  CAS  PubMed  Google Scholar 

Ivaska J., Pallari H.M., Nevo J., Eriksson J.E. 2007. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 313, 2050‒2062.

Article  CAS  PubMed  Google Scholar 

Tsuruta D., Jones J.C.R. 2003. The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress. J. Cell Sci. 116, 4977‒4984.

Article  CAS  PubMed  Google Scholar 

Cattaruzza M., Lattrich C., Hecker M. 2004. Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells. Hypertension. 43, 1‒5.

Article  Google Scholar 

Burridge K., Guilluy C. 2016. Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 343, 14–20.

Article  CAS  PubMed  Google Scholar 

Seetharaman S., Etienne-Manneville S. 2019. Microtubules at focal adhesions—a double-edged sword. J. Cell Sci. 132, 1‒11.

Article  Google Scholar 

Gonzales M., Weksler B., Tsuruta D., Goldman R.D., Yoon K.J., Hopkinson S.B., Flitney F.W., Jones J.C.R. 2001. Structure and function of a vimentin-associated matrix adhesion in endothelial cells. Mol. Biol. Cell. 12, 85–100.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bhattacharya R., Gonzalez A.M., DeBiase P.J., Trejo H.E., Goldman R.D., Flitney F.W., Jones J.C.R. 2009. Recruitment of vimentin to the cell surface by β3 integrin and plectin mediates adhesion strength. J. Cell Sci. 122, 1390–1400.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Vohnoutka R.B., Gulvady A.C., Goreczny G., Alpha K., Handelman S.K., Sexton J.Z., Turner C.E. 2019. The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Mol. Biol. Cell. 30, 3037–3056.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Burgstaller G., Gregor M., Winter L., Wiche G. 2010. Keeping the vimentin network under control: Cell-matrix adhesion-associated plectin 1f affects cell shape and polarity of fibroblasts. Mol. Biol. Cell. 21, 3362–3375.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Setou M., Seog D-H., Tanaka Y., Kanai Y., Takei Y., Kawagishi M., Hirokawa N. 2002. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature. 417, 83‒87.

Article  CAS  PubMed  Google Scholar 

Li B., Trueb B. 2001. Analysis of the α-actinin/zyxin interaction. J. Biol. Chem. 276, 33328–33335.

Article  CAS  PubMed  Google Scholar 

Coutts A.S., MacKenzie E., Griffith E., Black D.M. 2003. TES is a novel focal adhesion protein with a role in cell spreading. J. Cell Sci. 116, 897‒906.

Article  CAS  PubMed  Google Scholar 

Lv K., Chen L., Li Y., Li Z., Zheng P., Liu Y., Chen J., Teng J. 2015. Trip6 promotes dendritic morphogenesis through dephosphorylated GRIP1-dependent myosin VI and F-actin organization. J. Neurosci. 35, 2559‒2571.

Article  CAS  PubMed  Google Scholar 

Wyszynski M., Kim E., Dunah A.W., Passafaro M., Valtschanoff J.G., Serra-Pages C., Streuli M., Weinberg R.J., Sheng M. 2002. Interaction between GRIP and liprin-α/SYD2 is required for AMPA receptor targeting. Neuron. 34, 39–52.

Article  CAS  PubMed  Google Scholar 

Takamiya K., Kostourou V., Adams S., Jadeja S., Chalepakis G., Scambler P.J., Huganir R.L., Adams R.H. 2004. A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Nat. Genet. 36, 172‒177.

Article  CAS  PubMed  Google Scholar 

Modjeski K.L., Ture S.K., Field D.J., Cameron S.J., Morrell C.N. 2016. Glutamate receptor interacting protein 1 mediates platelet adhesion and thrombus formation. PLoS One. 11, e0160638.

Article  PubMed Central  PubMed  Google Scholar 

Geiger J.C., Lipka J., Segura I., Hoyer S., Schlager M.A., Wulf P.S., Weinges S., Demmers J., Hoogenraad C.C., Acker-Palmer A. 2014. The GRIP1/14-3-3 pathway coordinates cargo trafficking and dendrite development. Dev. Cell. 28, 381–393.

Article  CAS  PubMed  Google Scholar 

Charych E.I., Li R., Serwanski D.R., Li X., Miralles C.P., Pinal N., Blas A.L.D. 2006. Identification and characterization of two novel splice forms of GRIP1 in the rat brain. J. Neurochem. 97, 884–898.

Article  CAS  PubMed  Google Scholar 

Yamazaki M., Fukay M., Abe M., Ikeno K., Kakizaki T., Watanabe M., Sakimura K. 2001. Differential palmitoylation of two mouse glutamate receptor interacting protein 1 forms with different N-terminal sequences. Neurosci. Lett. 304, 81‒84.

Article  CAS  PubMed  Google Scholar 

Hanley L.J., Henley J.M. 2010. Differential roles of GRIP1a and GRIP1b in AMPA receptor trafficking. Neurosci. Lett. 485, 167–172.

Article  CAS  PubMed Central  PubMed  Google Scholar 

DeSouza S., Fu J., States B.A., Ziff E.B. 2002. Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters. J. Neurosci. 22, 3493–3503.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Dong H., O’Brien R.J., Fung E.T., Lanahan A.A., Worley P.F., Huganir R.L. 1997. GRIP: A synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature. 386, 279–284.

Article  CAS  PubMed  Google Scholar 

Pfennig S., Foss F., Bissen D., Harde E., Treeck J.C., Segarra M., Acker-Palmer A. 2017. GRIP1 binds to ApoER2 and ephrinB2 to induce activity-dependent AMPA receptor insertion at the synapse. Cell Rep. 21, 84–96.

Article 

Comments (0)

No login
gif