Hookway C., Ding L., Davidson M.W., Rappoport J.Z., Danuser G., Gelfand V.I. 2015. Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Mol. Biol. Cell. 26, 1675‒1686.
Article CAS PubMed Central PubMed Google Scholar
Forry-Schaudies S., Murray J.M., Toyama Y., Holtzer H. 1986. Effects of colcemid and taxol on microtubules and intermediate filaments in chick embryo fibroblasts. Cell Motil. Cytoskeleton. 6, 324‒338.
Article CAS PubMed Google Scholar
Gyoeva F.K., Gelfand V.I. 1991. Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. Nature. 353, 445‒448.
Article CAS PubMed Google Scholar
Robert A., Tian P., Adam S.A., Kittisopikul M., Jaqaman K., Goldman R.D., Gelfand V.I. 2019. Kinesin-dependent transport of keratin filaments: A unified mechanism for intermediate filament transport. FASEB J. 33, 388‒399.
Article CAS PubMed Google Scholar
Hollenbeck P.J., Bershadsky A.D., Pletjushkina O.Y., Tint I.S., Vasiliev J.M. 1989. Intermediate filament collapse is an ATP-dependent and actin-dependent process. J. Cell Sci. 92, 621‒631.
Article CAS PubMed Google Scholar
Fu M.M., Holzbaur E.L.F. 2014. Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol. 24, 564‒574.
Article CAS PubMed Central PubMed Google Scholar
Bershadsky A.B., Tint I.S., Svitkina T.M. 1987. Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts. Cell Motil. Cytoskeleton. 8, 274‒283.
Article CAS PubMed Google Scholar
Ivaska J., Pallari H.M., Nevo J., Eriksson J.E. 2007. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 313, 2050‒2062.
Article CAS PubMed Google Scholar
Tsuruta D., Jones J.C.R. 2003. The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress. J. Cell Sci. 116, 4977‒4984.
Article CAS PubMed Google Scholar
Cattaruzza M., Lattrich C., Hecker M. 2004. Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells. Hypertension. 43, 1‒5.
Burridge K., Guilluy C. 2016. Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 343, 14–20.
Article CAS PubMed Google Scholar
Seetharaman S., Etienne-Manneville S. 2019. Microtubules at focal adhesions—a double-edged sword. J. Cell Sci. 132, 1‒11.
Gonzales M., Weksler B., Tsuruta D., Goldman R.D., Yoon K.J., Hopkinson S.B., Flitney F.W., Jones J.C.R. 2001. Structure and function of a vimentin-associated matrix adhesion in endothelial cells. Mol. Biol. Cell. 12, 85–100.
Article CAS PubMed Central PubMed Google Scholar
Bhattacharya R., Gonzalez A.M., DeBiase P.J., Trejo H.E., Goldman R.D., Flitney F.W., Jones J.C.R. 2009. Recruitment of vimentin to the cell surface by β3 integrin and plectin mediates adhesion strength. J. Cell Sci. 122, 1390–1400.
Article CAS PubMed Central PubMed Google Scholar
Vohnoutka R.B., Gulvady A.C., Goreczny G., Alpha K., Handelman S.K., Sexton J.Z., Turner C.E. 2019. The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Mol. Biol. Cell. 30, 3037–3056.
Article CAS PubMed Central PubMed Google Scholar
Burgstaller G., Gregor M., Winter L., Wiche G. 2010. Keeping the vimentin network under control: Cell-matrix adhesion-associated plectin 1f affects cell shape and polarity of fibroblasts. Mol. Biol. Cell. 21, 3362–3375.
Article CAS PubMed Central PubMed Google Scholar
Setou M., Seog D-H., Tanaka Y., Kanai Y., Takei Y., Kawagishi M., Hirokawa N. 2002. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature. 417, 83‒87.
Article CAS PubMed Google Scholar
Li B., Trueb B. 2001. Analysis of the α-actinin/zyxin interaction. J. Biol. Chem. 276, 33328–33335.
Article CAS PubMed Google Scholar
Coutts A.S., MacKenzie E., Griffith E., Black D.M. 2003. TES is a novel focal adhesion protein with a role in cell spreading. J. Cell Sci. 116, 897‒906.
Article CAS PubMed Google Scholar
Lv K., Chen L., Li Y., Li Z., Zheng P., Liu Y., Chen J., Teng J. 2015. Trip6 promotes dendritic morphogenesis through dephosphorylated GRIP1-dependent myosin VI and F-actin organization. J. Neurosci. 35, 2559‒2571.
Article CAS PubMed Google Scholar
Wyszynski M., Kim E., Dunah A.W., Passafaro M., Valtschanoff J.G., Serra-Pages C., Streuli M., Weinberg R.J., Sheng M. 2002. Interaction between GRIP and liprin-α/SYD2 is required for AMPA receptor targeting. Neuron. 34, 39–52.
Article CAS PubMed Google Scholar
Takamiya K., Kostourou V., Adams S., Jadeja S., Chalepakis G., Scambler P.J., Huganir R.L., Adams R.H. 2004. A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Nat. Genet. 36, 172‒177.
Article CAS PubMed Google Scholar
Modjeski K.L., Ture S.K., Field D.J., Cameron S.J., Morrell C.N. 2016. Glutamate receptor interacting protein 1 mediates platelet adhesion and thrombus formation. PLoS One. 11, e0160638.
Article PubMed Central PubMed Google Scholar
Geiger J.C., Lipka J., Segura I., Hoyer S., Schlager M.A., Wulf P.S., Weinges S., Demmers J., Hoogenraad C.C., Acker-Palmer A. 2014. The GRIP1/14-3-3 pathway coordinates cargo trafficking and dendrite development. Dev. Cell. 28, 381–393.
Article CAS PubMed Google Scholar
Charych E.I., Li R., Serwanski D.R., Li X., Miralles C.P., Pinal N., Blas A.L.D. 2006. Identification and characterization of two novel splice forms of GRIP1 in the rat brain. J. Neurochem. 97, 884–898.
Article CAS PubMed Google Scholar
Yamazaki M., Fukay M., Abe M., Ikeno K., Kakizaki T., Watanabe M., Sakimura K. 2001. Differential palmitoylation of two mouse glutamate receptor interacting protein 1 forms with different N-terminal sequences. Neurosci. Lett. 304, 81‒84.
Article CAS PubMed Google Scholar
Hanley L.J., Henley J.M. 2010. Differential roles of GRIP1a and GRIP1b in AMPA receptor trafficking. Neurosci. Lett. 485, 167–172.
Article CAS PubMed Central PubMed Google Scholar
DeSouza S., Fu J., States B.A., Ziff E.B. 2002. Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters. J. Neurosci. 22, 3493–3503.
Article CAS PubMed Central PubMed Google Scholar
Dong H., O’Brien R.J., Fung E.T., Lanahan A.A., Worley P.F., Huganir R.L. 1997. GRIP: A synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature. 386, 279–284.
Article CAS PubMed Google Scholar
Pfennig S., Foss F., Bissen D., Harde E., Treeck J.C., Segarra M., Acker-Palmer A. 2017. GRIP1 binds to ApoER2 and ephrinB2 to induce activity-dependent AMPA receptor insertion at the synapse. Cell Rep. 21, 84–96.
Comments (0)