Acioglu C, Li L, Elkabes S (2021) Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res 1758:147291. https://doi.org/10.1016/j.brainres.2021.147291
Article CAS PubMed Google Scholar
Amano H, Amano T, Matsubayashi H, Ishihara K, Serikawa T, Sasa M (2001) Enhanced calcium influx in hippocampal CA3 neurons of spontaneously epileptic rats. Epilepsia 42:345–350. https://doi.org/10.1046/j.1528-1157.2001.11300.x
Article CAS PubMed Google Scholar
Bhusal A, Afridi R, Lee WH, Suk K (2023) Bidirectional Communication between Microglia and astrocytes in Neuroinflammation. Curr Neuropharmacol 21:2020–2029. https://doi.org/10.2174/1570159x21666221129121715
Article CAS PubMed PubMed Central Google Scholar
Braun AP (2013) Turning up the heat on L-type Ca2 + channels promotes neuronal firing and seizure activity. Channels (Austin) 7:229–230. https://doi.org/10.4161/chan.25956
Article CAS PubMed Google Scholar
Brewer LD, Thibault O, Staton J, Thibault V, Rogers JT, Garcia-Ramos G et al (2007) Increased vulnerability of hippocampal neurons with age in culture: temporal association with increases in NMDA receptor current, NR2A subunit expression and recruitment of L-type calcium channels. Brain Res 1151:20–31. https://doi.org/10.1016/j.brainres.2007.03.020
Article CAS PubMed Google Scholar
Bylicky MA, Mueller GP, Day RM (2018) Mechanisms of endogenous neuroprotective effects of astrocytes in Brain Injury. Oxid Med Cell Longev 2018:6501031. https://doi.org/10.1155/2018/6501031
Article CAS PubMed PubMed Central Google Scholar
Canedo T, Portugal CC, Socodato R, Almeida TO, Terceiro AF, Bravo J et al (2021) Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine. Neuropsychopharmacology 46:2358–2370. https://doi.org/10.1038/s41386-021-01139-7
Article CAS PubMed PubMed Central Google Scholar
Cao W, Lin J, Xiang W, Liu J, Wang B, Liao W et al (2022) Physical Exercise-Induced Astrocytic Neuroprotection and Cognitive Improvement through Primary Cilia and Mitogen-Activated Protein Kinases Pathway in rats with chronic cerebral hypoperfusion. Front Aging Neurosci 14:866336. https://doi.org/10.3389/fnagi.2022.866336
Article CAS PubMed PubMed Central Google Scholar
Chung YH, Shin CM, Kim MJ, Cha CI (2001) Enhanced expression of L-type Ca2 + channels in reactive astrocytes after ischemic injury in rats. Neurosci Lett 302:93–96. https://doi.org/10.1016/s0304-3940(01)01683-4
Article CAS PubMed Google Scholar
Corvino V, Marchese E, Michetti F, Geloso MC (2013) Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochem Res 38:240–253. https://doi.org/10.1007/s11064-012-0932-9
Article CAS PubMed Google Scholar
Cui Z, Zhou L, Liu C, Zhu G, Wu X, Yan Y et al (2015) The role of Homer1b/c in neuronal apoptosis following LPS-induced neuroinflammation. Neurochem Res 40:204–215. https://doi.org/10.1007/s11064-014-1460-6
Article CAS PubMed Google Scholar
Denaroso GE, Smith Z, Angeliu CG, Cheli VT, Wang C, Paez PM (2023) Deletion of voltage-gated calcium channels in astrocytes decreases neuroinflammation and demyelination in a murine model of multiple sclerosis. J Neuroinflammation 20:263. https://doi.org/10.1186/s12974-023-02948-x
Article CAS PubMed PubMed Central Google Scholar
Ding ZB, Song LJ, Wang Q, Kumar G, Yan YQ, Ma CG (2021) Astrocytes: a double-edged sword in neurodegenerative diseases. Neural Regener Res 16:1702–1710. https://doi.org/10.4103/1673-5374.306064
Dragic M, Milicevic K, Adzic M, Stevanovic I, Ninkovic M, Grkovic I et al (2021) Trimethyltin increases intracellular ca(2+) Via L-Type Voltage-gated Calcium channels and promotes inflammatory phenotype in rat astrocytes in Vitro. Mol Neurobiol 58:1792–1805. https://doi.org/10.1007/s12035-020-02273-x
Article CAS PubMed Google Scholar
Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24:312–325. https://doi.org/10.1038/s41593-020-00783-4
Article CAS PubMed PubMed Central Google Scholar
Espinosa-Parrilla JF, Martínez-Moreno M, Gasull X, Mahy N, Rodríguez MJ (2015) The L-type voltage-gated calcium channel modulates microglial pro-inflammatory activity. Mol Cell Neurosci 64:104–115. https://doi.org/10.1016/j.mcn.2014.12.004
Article CAS PubMed Google Scholar
Fan YY, Huo J (2021) A1/A2 astrocytes in central nervous system injuries and diseases: angels or devils? Neurochem Int 148:105080. https://doi.org/10.1016/j.neuint.2021.105080
Article CAS PubMed Google Scholar
Ge X, Zhang DM, Li MM, Zhang Y, Zhu XY, Zhou Y et al (2019) Microglial LOX-1/MAPKs/NF-κB positive loop promotes the vicious cycle of neuroinflammation and neural injury. Int Immunopharmacol 70:187–200. https://doi.org/10.1016/j.intimp.2019.02.013
Article CAS PubMed Google Scholar
Hadar EJ, Yang Y, Sayin U, Rutecki PA (2002) Suppression of pilocarpine-induced ictal oscillations in the hippocampal slice. Epilepsy Res 49:61–71. https://doi.org/10.1016/s0920-1211(02)00016-5
Article CAS PubMed Google Scholar
Hashioka S, Wu Z, Klegeris A (2021) Glia-Driven Neuroinflammation and systemic inflammation in Alzheimer’s Disease. Curr Neuropharmacol 19:908–924. https://doi.org/10.2174/1570159x18666201111104509
Article CAS PubMed PubMed Central Google Scholar
Haun SE, Murphy EJ, Bates CM, Horrocks LA (1992) Extracellular calcium is a mediator of astroglial injury during combined glucose-oxygen deprivation. Brain Res 593:45–50. https://doi.org/10.1016/0006-8993(92)91261-c
Article CAS PubMed Google Scholar
Hopp SC, Royer SE, D’Angelo HM, Kaercher RM, Fisher DA, Wenk GL (2015) Differential neuroprotective and anti-inflammatory effects of L-type voltage dependent calcium channel and ryanodine receptor antagonists in the substantia nigra and locus coeruleus. J Neuroimmune Pharmacol 10:35–44. https://doi.org/10.1007/s11481-014-9568-7
Huang BR, Chang PC, Yeh WL, Lee CH, Tsai CF, Lin C et al (2014) Anti-neuroinflammatory effects of the calcium channel blocker nicardipine on microglial cells: implications for neuroprotection. PLoS ONE 9:e91167. https://doi.org/10.1371/journal.pone.0091167
Article PubMed PubMed Central Google Scholar
Huiliang Z, Mengzhe Y, Xiaochuan W, Hui W, Min D, Mengqi W et al (2021) Zinc induces reactive astrogliosis through ERK-dependent activation of Stat3 and promotes synaptic degeneration. J Neurochem 159:1016–1027. https://doi.org/10.1111/jnc.15531
Article CAS PubMed Google Scholar
Hwang Y, Kim HC, Shin EJ (2020) Enhanced neurogenesis is involved in neuroprotection provided by rottlerin against trimethyltin-induced delayed apoptotic neuronal damage. Life Sci 262:118494. https://doi.org/10.1016/j.lfs.2020.118494
Article CAS PubMed Google Scholar
Hwang Y, Kim H-C, Shin E-J (2022) Effect of rottlerin on astrocyte phenotype polarization after trimethyltin insult in the dentate gyrus of mice. J Neuroinflammation 19:142. https://doi.org/10.1186/s12974-022-02507-w
Article CAS PubMed PubMed Central Google Scholar
Hwang Y, Park JH, Kim HC, Shin EJ (2023) GABA(B) receptor activation alters astrocyte phenotype changes induced by trimethyltin via ERK signaling in the dentate gyrus of mice. Life Sci 319:121529. https://doi.org/10.1016/j.lfs.2023.121529
Comments (0)