Treatment response of venlafaxine induced alterations of gut microbiota and metabolites in a mouse model of depression

Abdel-Wahab BA, Salama RH (2011) Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice. Pharmacol Biochem Behav 100: 59–65

Ali-Sisto T, Tolmunen T, Viinamäki H, Mäntyselkä P, Valkonen-Korhonen M, Koivumaa-Honkanen H, Honkalampi K, Ruusunen A, Nandania J, Velagapudi V, Lehto SM (2018) Global arginine bioavailability ratio is decreased in patients with major depressive disorder. J Affect Disord 229: 145–151

Amin N, Liu J, Bonnechere B, MahmoudianDehkordi S, Arnold M, Batra R, Chiou YJ, Fernandes M, Ikram MA, Kraaij R, Krumsiek J, Newby D, Nho K, Radjabzadeh D, Saykin AJ, Shi L, Sproviero W, Winchester L, Yang Y, Nevado-Holgado AJ, Kastenmuller G, Kaddurah-Daouk R, van Duijn CM (2023) Interplay of metabolome and gut microbiome in individuals with major depressive disorder vs control individuals. JAMA Psychiatry 80: 597–609

Astbury S, Atallah E, Vijay A, Aithal GP, Grove JI, Valdes AM (2020) Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes 11: 569–580

Bagot RC, Cates HM, Purushothaman I, Vialou V, Heller EA, Yieh L, LaBonté B, Peña CJ, Shen L, Wittenberg GM, Nestler EJ (2017) Ketamine and imipramine reverse transcriptional signatures of susceptibility and induce resilience-specific gene expression profiles. Biol psychiatry 81: 285–295

Basiji K, Sendani AA, Ghavami SB, Farmani M, Kazemifard N, Sadeghi A, Lotfali E, Aghdaei HA (2023) The critical role of gut-brain axis microbiome in mental disorders. Metab Brain Dis 38: 2547–2561

Beckmann H, Strauss MA, Ludolph E (1977) Dl-phenylalanine in depressed patients: an open study. J Neural Transm 41: 123–134

Bergström A, Jayatissa MN, Thykjaer T, Wiborg O (2007) Molecular pathways associated with stress resilience and drug resistance in the chronic mild stress rat model of depression: a gene expression study. J Mol Neurosci 33: 201–215

Bi C, Guo S, Hu S, Chen J, Ye M, Liu Z (2022) The microbiota-gut-brain axis and its modulation in the therapy of depression: comparison of efficacy of conventional drugs and traditional chinese medicine approaches. Pharmacol Res 183: 106372

Bonaz B, Sinniger V, Pellissier S (2019) Vagus nerve stimulation at the interface of brain-gut interactions. Cold Spring Harb Perspect Med 9:a034199

Bozek K, Wei Y, Yan Z, Liu X, Xiong J, Sugimoto M, Tomita M, Paabo S, Sherwood CC, Hof PR, Ely JJ, Li Y, Steinhauser D, Willmitzer L, Giavalisco P, Khaitovich P (2015) Organization and evolution of brain lipidome revealed by large-scale analysis of human, chimpanzee, macaque, and mouse tissues. Neuron 85: 695–702

Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD (2022) Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 237: 108238

Carvalho AF, Berk M, Hyphantis TN, McIntyre RS (2014) The integrative management of treatment-resistant depression: a comprehensive review and perspectives. Psychother Psychosom 83: 70–88

Chekroud AM, Gueorguieva R, Krumholz HM, Trivedi MH, Krystal JH, McCarthy G (2017) Reevaluating the efficacy and predictability of antidepressant treatments: a symptom clustering approach. JAMA Psychiatry 74: 370–378

Ciocan D, Cassard AM, Becquemont L, Verstuyft C, Voican CS, El Asmar K, Colle R, David D, Trabado S, Feve B, Chanson P, Perlemuter G, Corruble E (2021) Blood microbiota and metabolomic signature of major depression before and after antidepressant treatment: a prospective case-control study. J Psychiatry Neurosci 46: E358-e368

Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins JP, Churchill R, Watanabe N, Nakagawa A, Omori IM, McGuire H, Tansella M, Barbui C (2009) Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet 373: 746–758

Clark DL, MacMaster FP, Brown EC, Kiss ZHT, Ramasubbu R (2020) Rostral anterior cingulate glutamate predicts response to subcallosal deep brain stimulation for resistant depression. J Affect Disord 266: 90–94

Cummins RO, Hazinski MF, Kerber RE, Kudenchuk P, Becker L, Nichol G, Malanga B, Aufderheide TP, Stapleton EM, Kern K, Ornato JP, Sanders A, Valenzuela T, Eisenberg M (1998) Low-energy biphasic waveform defibrillation: evidence-based review applied to emergency cardiovascular care guidelines: a statement for healthcare professionals from the American Heart Association Committee on Emergency Cardiovascular Care and the Subcommittees on Basic Life Support, Advanced Cardiac Life Support, and Pediatric Resuscitation. Circulation 97: 1654–1667

Deaver JA, Eum SY, Toborek M (2018) Circadian disruption changes gut microbiome taxa and functional gene composition. Front Microbiol 9: 737

Dhir A, Kulkarni SK (2007) Involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of venlafaxine in mice. Prog Neuropsychopharmacol Biol Psychiatry 31: 921–925

Duan J, Huang Y, Tan X, Chai T, Wu J, Zhang H, Li Y, Hu X, Zheng P, Ji P, Zhao L, Yang D, Fang L, Song J, Xie P (2021) Characterization of gut microbiome in mice model of depression with divergent response to escitalopram treatment. Transl Psychiatry 11: 303

Feng Y, Gao X, Meng M, Xue H, Qin X (2020) Multi-omics reveals the mechanisms of antidepressant-like effects of the low polarity fraction of Bupleuri Radix. J Ethnopharmacol 256:112806

Fenli, S., Feng, W., Ronghua, Z., Huande, L., 2013. Biochemical mechanism studies of venlafaxine by metabonomic method in rat model of depression. Eur Rev Med Pharmacol Sci 17: 41–48

Fernandez-Guasti A, Olivares-Nazario M, Reyes R, Martinez-Mota L (2017) Sex and age differences in the antidepressant-like effect of fluoxetine in the forced swim test. Pharmacol Biochem Behav 152: 81–89

Fiorucci S, Mencarelli A, Palladino G, Cipriani S (2009) Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol Sci 30: 570–580

Fischer E, Heller B, Nachon M, Spatz H (1975) Therapy of depression by phenylalanine. Preliminary note. Arzneimittelforschung 25: 132

Global Burden of Disease Study 2013 Collaborators (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386: 743–800

Golden SA, Covington HE 3rd, Berton O, Russo SJ (2011) A standardized protocol for repeated social defeat stress in mice. Nat Protoc 6: 1183–1191

Gong X, Huang C, Yang X, Chen J, Pu J, He Y, Xie P (2021) Altered fecal metabolites and colonic glycerophospholipids were associated with abnormal composition of gut microbiota in a depression model of mice. Front Neurosci 15: 701355

Holliday SM, Benfield P (1995) Venlafaxine. A review of its pharmacology and therapeutic potential in depression. Drugs 49: 280–294

Hu H, Yao Y, Liu F, Luo L, Liu J, Wang X, Wang Q (2024) Integrated microbiome and metabolomics revealed the protective effect of baicalin on alveolar bone inflammatory resorption in aging. Phytomedicine 124: 155233

Jayatissa MN, Bisgaard C, Tingström A, Papp M, Wiborg O (2006) Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 31: 2395–2404

Kaddurah-Daouk R, Boyle SH, Matson W, Sharma S, Matson S, Zhu H, Bogdanov MB, Churchill E, Krishnan RR, Rush AJ, Pickering E, Delnomdedieu M (2011) Pretreatment metabotype as a predictor of response to sertraline or placebo in depressed outpatients: a proof of concept. Transl Psychiatry 1: e26-

Kaster MP, Rosa AO, Santos AR, Rodrigues AL (2005) Involvement of nitric oxide-cGMP pathway in the antidepressant-like effects of adenosine in the forced swimming test. Int J Neuropsychopharmacol 8: 601–606

Klünemann M, Andrejev S, Blasche S, Mateus A, Phapale P, Devendran S, Vappiani J, Simon B, Scott TA, Kafkia E, Konstantinidis D, Zirngibl K, Mastrorilli E, Banzhaf M, Mackmull MT, Hövelmann F, Nesme L, Brochado AR, Maier L, Bock T, Periwal V, Kumar M, Kim Y, Tramontano M, Schultz C, Beck M, Hennig J, Zimmermann M, Sévin DC, Cabreiro F, Savitski MM, Bork P, Typas A, Patil KR (2021) Bioaccumulation of therapeutic drugs by human gut bacteria. Nature 597: 533–538

LabontéB, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, Scarpa JR, Moy G, Loh YE, Cahill M, Lorsch ZS, Hamilton PJ, Calipari ES, Hodes GE, Issler O, Kronman H, Pfau M, Obradovic ALJ, Dong Y, Neve RL, Russo S, Kazarskis A, Tamminga C, Mechawar N, Turecki G, Zhang B, Shen L, Nestler EJ (2017) Sex-specific transcriptional signatures in human depression. Nat Med 23: 1102–1111

Le Guern R, Grandjean T, Stabler S, Bauduin M, Gosset P, Kipnis É, Dessein R (2023) Gut colonisation with multidrug-resistant Klebsiella pneumoniae worsens Pseudomonas aeruginosa lung infection. Nat Commun 14:78. https://doi.org/10.1038/s41467-022-35767-4

Liu JJ, Hezghia A, Shaikh SR, Cenido JF, Stark RE, Mann JJ, Sublette ME (2018a) Regulation of monoamine transporters and receptors by lipid microdomains: implications for depression. Neuropsychopharmacology 43: 2165–2179

Liu MY, Yin CY, Zhu LJ, Zhu XH, Xu C, Luo CX, Chen H, Zhu DY, Zhou QG (2018b) Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc 13: 1686–1698

Liu D, Hu XY, Xia HJ, Wang LJ, Shi P, Chen XP, Zhou QX (2019) Antidepressant effect of venlafaxine in chronic unpredictable stress: evidence of the involvement of key enzymes responsible for monoamine neurotransmitter synthesis and metabolism. Mol Med Rep 20: 2954–2962

Liu X, Teng T, Li X, Fan L, Xiang Y, Jiang Y, Du K, Zhang Y, Zhou X, Xie P (2021a) Impact of inosine on chronic unpredictable mild stress-induced depressive and anxiety-like behaviors with the alteration of gut microbiota. Front Cell Infect Microbiol 11: 697640

Liu Y, Wang H, Gui S, Zeng B, Pu J, Zheng P, Zeng L, Luo Y, Wu Y, Zhou C, Song J, Ji P, Wei H, Xie P (2021b) Proteomics analysis of the gut-brain axis in a gut microbiota-dysbiosis model of depression. Transl Psychiatry 11: 568

Liu H, Liao C, Wu L, Tang J, Chen J, Lei C, Zheng L, Zhang C, Liu YY, Xavier J, Dai L (2022a) Ecological dynamics of the gut microbiome in response to dietary fiber. Isme J 16: 2040–2055

Liu J, Fang Y, Cui L, Wang Z, Luo Y, Gao C, Ge W, Huang T, Wen J, Zhou T (2022b) Butyrate emerges as a crucial effector of Zhi-Zi-Chi decoctions to ameliorate depression via multiple pathways of brain-gut axis. Biomed Pharmacother 149: 112861

Liu L, Wang H, Zhang H, Chen X, Zhang Y, Wu J, Zhao L, Wang D, Pu J, Ji P, Xie P (2022c) Toward a deeper understanding of gut microbiome in depression: the promise of clinical applicability. Adv Sci (Weinh) 9:e2203707

Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P (2023) Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine 90: 104527

Lorsch ZS, Loh YE, Purushothaman I, Walker DM, Parise EM, Salery M, Cahill ME, Hodes GE, Pfau ML, Kronman H, Hamilton PJ, Issler O, Labonte B, Symonds AE, Zucker M, Zhang TY, Meaney MJ, Russo SJ, Shen L, Bagot RC, Nestler EJ (2018) Estrogen receptor alpha drives pro-resilient transcription in mouse models of depression. Nat Commun 9: 1116

Lucchelli A, Santagostino-Barbone MG, Barbieri A, Candura SM, Tonini M (1995) The interaction of antidepressant drugs with central and peripheral (enteric) 5-HT3 and 5-HT4 receptors. Br J Pharmacol 114: 1017–1025

Lukić I, Getselter D, Ziv O, Oron O, Reuveni E, Koren O, Elliott E (2019) Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl Psychiatry 9:133

Mariani N, Everson J, Pariante CM, Borsini A (2022) Modulation of microglial activation by antidepressants. J Psychopharmacol 36:131–150

Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125: 926–938

McMurray KMJ, Ramaker MJ, Barkley-Levenson AM, Sidhu PS, Elkin PK, Reddy MK, Guthrie ML, Cook JM, Rawal VH, Arnold LA, Dulawa SC, Palmer AA (2018) Identification of a novel, fast-acting GABAergic antidepressant. Mol Psychiatry 23: 384–391

Möhler H (2012) The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 62:42–53

Pan SJ, Tan YL, Yao SW, Xin Y, Yang X, Liu J, Xiong J (2018) Fluoxetine induces lipid metabolism abnormalities by acting on the liver in patients and mice with depression. Acta Pharmacol Sin 39:1463–1472

Paone P, Cani PD (2020) Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69:2232–2243

Park DI, Dournes C, Sillaber I, Uhr M, Asara JM, Gassen NC, Rein T, Ising M, Webhofer C, Filiou MD, Müller MB, Turck CW (2016) Purine and pyrimidine metabolism: Convergent evidence on chronic antidepressant treatment response in mice and humans. Sci Rep 6:35317

Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N, Henrissat B, Le Gall S, Saulnier L, Hayashi DK, Meynier A, Vinoy S, Giannone RJ, Hettich RL, Gordon JI (2019) Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell 179:59–73.e13

Paul ER, Schwieler L, Erhardt S, Boda S, Trepci A, Kämpe R, Asratian A, Holm L, Yngve A, Dantzer R, Heilig M, Hamilton JP, Samuelsson M (2022) Peripheral and central kynurenine pathway abnormalities in major depression. Brain Behav Immun 101:136–145

Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, Sziranyi B, Vesely C, Decker T, Stocker R, Warth B, von Bergen M, Wagner M, Berry D (2020) Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun 11:5104

Perić I, Lješević M, Beškoski V, Nikolić M, Filipović D (2022) Metabolomic profiling relates tianeptine effectiveness with hippocampal GABA, myo-inositol, cholesterol, and fatty acid metabolism restoration in socially isolated rats. Psychopharmacology (Berl) 239:2955–2974

Pu J, Liu Y, Gui S, Tian L, Yu Y, Song X, Zhong X, Chen X, Chen W, Zheng P, Zhang, H, Gong X, Liu L, Wu J, Wang H, Xie P (2021a) Metabolomic changes in animal models of depression: a systematic analysis. Mol Psychiatry 26:7328–7336

Pu J, Liu Y, Zhang H, Tian L, Gui S, Yu Y, Chen X, Chen Y, Yang L, Ran Y, Zhong X, Xu S, Song X, Liu L, Zheng P, Wang H, Xie P (2021b) An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder. Mol Psychiatry 26:4265–4276

Pu J, Liu Y, Gui S, Tian L, Yu Y, Wang D, Zhong X, Chen W, Chen X, Chen Y, Chen X, Gong X, Liu L, Li W, Wang H, Xie P (2022) Effects of pharmacological treatment on metabolomic alterations in animal models of depression. Transl Psychiatry 12:175

Renshaw PF, Parow AM, Hirashima F, Ke Y, Moore CM, Frederick Bde B, Fava M, Hennen J, Cohen BM (2001) Multinuclear magnetic resonance spectroscopy studies of brain purines in major depression. Am J Psychiatry 158:2048–2055

Rojas-Corrales MO, Berrocoso E, Gibert-Rahola J, MicóJA (2004) Antidepressant-like effect of tramadol and its enantiomers in reserpinized mice: comparative study with desipramine, fluvoxamine, venlafaxine and opiates. J Psychopharmacol 18: 404–411

Scarpa JR, Fatma M, Loh YE, Traore SR, Stefan T, Chen TH, Nestler EJ, LabontéB (2020) Shared transcriptional signatures in major depressive disorder and mouse chronic stress models. Biol Psychiatry 88: 159–168

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

Schmitt AB, Bauer M, Volz HP, Moeller HJ, Jiang Q, Ninan PT, Loeschmann PA (2009) Differential effects of venlafaxine in the treatment of major depressive disorder according to baseline severity. Eur Arch Psychiatry Clin Neurosci 259:329–339

Schonewille M, de Boer JF, Groen AK (2016) Bile salts in control of lipid metabolism. Curr Opin Lipidol 27:295–301

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60

Shen P, Hu Q, Dong M, Bai S, Liang Z, Chen Z, Li P, Hu Z, Zhong X, Zhu D, Wang H, XieP (2017) Venlafaxine exerts antidepressant effects possibly by activating MAPK-ERK1/2 and P13K-AKT pathways in the hippocampus. Behav Brain Res 335:63–70

Shen W, Tao Y, Zheng F, Zhou H, Wu H, Shi H, Huang F, Wu X (2023) The alteration of gut microbiota in venlafaxine-ameliorated chronic unpredictable mild stress-induced depression in mice. Behav Brain Res 446:114399

Sun N, Zhang J, Wang J, Liu Z, Wang X, Kang P, Yang C, Liu P, Zhang K (2022) Abnormal gut microbiota and bile acids in patients with first-episode major depressive disorder and correlation analysis. Psychiatry Clin Neurosci 76:321–328

Thase ME, Entsuah AR, Rudolph RL (2001) Remission rates during treatment with venlafaxine or selective serotonin reuptake inhibitors. Br J Psychiatry 178: 234–241

Thomas J, Khanam R, Vohora D (2017) Activation of indoleamine 2, 3- dioxygenase pathway by olanzapine augments antidepressant effects of venlafaxine in mice. Psychiatry Res 258:444–448

Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

Venzala E, García-García AL, Elizalde N, Delagrange P, Tordera RM (2012) Chronic social defeat stress model: behavioral features, antidepressant action, and interaction with biological risk factors. Psychopharmacology (Berl) 224:313–325

Wang Y, Chang T, Chen YC, Zhang RG, Wang HN, Wu WJ, Peng ZW, Tan QR (2013) Quetiapine add-on therapy improves the depressive behaviors and hippocampal neurogenesis in fluoxetine treatment resistant depressive rats. Behav Brain Res 253:206–211

Wang Y, Zhou J, Ye J, Sun Z, He Y, Zhao Y, Ren S, Zhang G, Liu M, Zheng P, Wang G, Yang J (2023) Multi-omics reveal microbial determinants impacting the treatment outcome of antidepressants in major depressive disorder. Microbiome 11:195

Weersma RK, Zhernakova A, Fu J (2020) Interaction between drugs and the gut microbiome. Gut 69:1510–1519

Yan Z, Yang F, Cao J, Ding W, Yan S, Shi W, Wen S, Yao L (2021) Alterations of gut microbiota and metabolome with Parkinson’s disease. Microb Pathog 160:105187

Zhang S, Chen Q, Wu L, Sun K, Lan X, Xie X, Yan J (2022) Effects of Changyu Daotan Decoction on depression via restoration of mice hippocampus and alteration of expression of relevant neurotrophic factors. Evid Based Complement Alternat Med 2022:5750647

Zhang ZW, Han P, Fu J, Yu H, Xu H, Hu JC, Lu JY, Yang XY, Zhang HJ, Bu MM, Jiang JD, Wang Y (2023) Gut microbiota-based metabolites of Xiaoyao Pills (a typical Traditional Chinese medicine) ameliorate depression by inhibiting fatty acid amide hydrolase levels in brain. J Ethnopharmacol 313:116555

Zhen Y, Chen Y, Ge L, Wei W, Wang Y, Hu L, Loor JJ, Wang M, Yin J (2022) The short-day cycle induces intestinal epithelial purine metabolism imbalance and hepatic disfunctions in antibiotic-mediated gut microbiota perturbation mice. Int J Mol Sci 23:6008

Zheng P, Li Y, Wu J, Zhang H, Huang Y, Tan X, Pan J, Duan J, Liang W, Yin B, Deng F, Perry SW, Wong ML, Licinio J, Wei H, Yu G, Xie P (2019a) Perturbed microbial ecology in myasthenia gravis: evidence from the gut microbiome and fecal metabolome. Adv Sci (Weinh) 6: 1901441

Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, Liu Y, Cheng K, Zhou C, Wang H, Zhou X, Gui S, Perry SW, Wong ML, Licinio J, Wei H, Xie P (2019b) The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv 5:eaau8317

Zheng P, Wu J, Zhang H, Perry SW, Yin B, Tan X, Chai T, Liang W, Huang Y, Li Y, Duan J, Wong ML, Licinio J, Xie P (2021) The gut microbiome modulates gut-brain axis glycerophospholipid metabolism in a region-specific manner in a nonhuman primate model of depression. Mol Psychiatry 26:2380–2392

Comments (0)

No login
gif