Abbas MW, Hussain M, Qamar M, Ali S, Shafiq Z, Wilairatana P, Mubarak MS (2021) Antioxidant and anti-inflammatory effects of Peganum harmala extracts: an in vitro and in vivo study. Molecules 26(19):6084. https://doi.org/10.3390/molecules26196084
Article CAS PubMed PubMed Central Google Scholar
Abelaira HM, Réus GZ, Scaini G, Streck EL, Crippa JA, Quevedo J (2013) β-Carboline harmine reverses the effects induced by stress on behaviour and citrate synthase activity in the rat prefrontal cortex. Acta Neuropsychiatr 25(6):328–333. https://doi.org/10.1017/neu.2013.20
Abu Ghazaleh H, Lalies MD, Nutt DJ, Hudson AL (2015) The modulatory action of harmane on serotonergic neurotransmission in rat brain. Brain Res 9:1597:57–64. https://doi.org/10.1016/j.brainres.2014.11.056
Adell A, Myers RD (1995) 5-HT, dopamine, norepinephrine, and related metabolites in brain of low alcohol drinking (LAD) rats shift after chronic intra-hippocampal infusion of harman. Neurochem Res 20(2):209–215. https://doi.org/10.1007/BF00970546
Article CAS PubMed Google Scholar
Adell A, Biggs TA, Myers RD (1996) Action of harman (1-methyl-beta-carboline) on the brain: body temperature and in vivo efflux of 5-HT from hippocampus of the rat. Neuropharmacology 35(8):1101–1107. https://doi.org/10.1016/s0028-3908(96)00043-3
Article CAS PubMed Google Scholar
Adugna T, Selale G, Regassa G (2024) Assessment of Heavy Metal Contents in some common spices available in the local market of North Shewa Zone, Oromia Regional State, Ethiopia. Biol Trace Elem Res 202(7):3349–3361. https://doi.org/10.1007/s12011-023-03921-8
Article CAS PubMed Google Scholar
Ahmed SM, Luo L, Namani A, Wang XJ, Tang X (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis 1863(2):585–597. https://doi.org/10.1016/j.bbadis.2016.11.005
Article CAS PubMed Google Scholar
Akhtar MF, Raza SA, Saleem A, Hamid I, Ashraf Baig MMF, Sharif A, Sohail K, Javaid Z, Saleem U, Rasul A (2022) Appraisal of anti-arthritic and anti-inflammatory potential of folkloric Medicinal Plant Peganum harmala. Endocr Metab Immune Disord Drug Targets 22(1):49–63. https://doi.org/10.2174/1871530321666210208211310
Article CAS PubMed Google Scholar
Alijanpour S, Zarrindast MR (2020) Potentiation of morphine-induced antinociception by harmaline: involvement of µ-opioid and ventral tegmental area NMDA receptors. Psychopharmacology 237(2):557–570. https://doi.org/10.1007/s00213-019-05389-8
Article CAS PubMed Google Scholar
Amariz IA, Silva JP, Pereira ECV, Araujo NAC, Filho JMTA, Pereira RN, Oliveira AP, Rolim L (2019) Chemical study of Peganum harmala seeds. Afr J Biotechnol 18(21):462–471. https://doi.org/10.5897/AJB2019.16762
Aricioglu F, Altunbas H (2003) Harmane induces anxiolysis and antidepressant-like effects in rats. Ann N Y Acad Sci 1009:196–201. https://doi.org/10.1196/annals.1304.024
Article CAS PubMed Google Scholar
Atanasova D, Lazarov N, Stoyanov DS, Spassov RH, Tonchev AB, Tchekalarova J (2021) Reduced neuroinflammation and enhanced neurogenesis following chronic agomelatine treatment in rats undergoing chronic constant light. Neuropharmacology 197:108706. https://doi.org/10.1016/j.neuropharm.2021.108706
Article CAS PubMed Google Scholar
Attia H, Nounou H, Shalaby M (2018) Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxics 26(2):29. https://doi.org/10.3390/toxics6020029
Ayuob NN, El Wahab MGA, Ali SS, Abdel-Tawab HS (2018) Ocimum basilicum improve chronic stress-induced neurodegenerative changes in mice hippocampus. Metab Brain Dis 33(3):795–804. https://doi.org/10.1007/s11011-017-0173-3
Banerjee R, Kumar M, Gaurav I, Thakur S, Thakur A, Singh K, Karak S, Das R, Chhabra M (2021) In-silico prediction of the beta-carboline alkaloids harmine and harmaline as potent drug candidates for the treatment of Parkinson’s disease. Antiinflamm Antiallergy Agents Med Chem 20(3):250–263. https://doi.org/10.2174/1871523019999201111192344
Article CAS PubMed Google Scholar
Baum SS, Hill R, Rommelspacher H (1996) Harman-induced changes of extracellular concentrations of neurotransmitters in the nucleus accumbens of rats. Eur J Pharmacol 314(1–2):75–82. https://doi.org/10.1016/s0014-2999(96)00543-2
Article CAS PubMed Google Scholar
Benny F, Kumar S, Jayan J, Abdelgawad MA, Ghoneim MM, Kumar A, Manoharan A, Susan R, Sudevan ST, Mathew B (2023) Review of β-carboline and its derivatives as selective MAO-A inhibitors. Arch Pharm (Weinheim) 356(7):e2300091. https://doi.org/10.1002/ardp.202300091
Article CAS PubMed Google Scholar
Bensalem S, Soubhye J, Aldib I, Bournine L, Nguyen AT, Vanhaeverbeek M, Rousseau A, Boudjeltia KZ, Sarakbi A, Kauffmann JM, Nève J, Prévost M, Stévigny C, Maiza-Benabdesselam F, Bedjou F, Van Antwerpen P, Duez P (2014) Inhibition of myeloperoxidase activity by the alkaloids of Peganum harmala L. (Zygophyllaceae). J Ethnopharmacol 154(2):361–369. https://doi.org/10.1016/j.jep.2014.03.070
Article CAS PubMed Google Scholar
Celikyurt IK, Utkan T, Gocmez SS, Hudson A, Aricioglu F (2013) Effect of harmane, an endogenous β-carboline, on learning and memory in rats. Pharmacol Biochem Behav 103(3):666–671. https://doi.org/10.1016/j.pbb.2012.10.011
Article CAS PubMed Google Scholar
Correia AS, Cardoso A, Vale N (2023) BDNF unveiled: Exploring its role in major depression disorder serotonergic imbalance and associated stress conditions. Pharmaceutics 15(8):2081. https://doi.org/10.3390/pharmaceutics15082081
Article CAS PubMed PubMed Central Google Scholar
Di X, Wan M, Bai YN, Lu F, Zhao M, Zhang Z, Li Y (2024) Exploring the mechanism of Icariin in the treatment of depression through BDNF-TrkB pathway based on network pharmacology. Naunyn Schmiedebergs Arch Pharmacol 397(1):463–478. https://doi.org/10.1007/s00210-023-02615-1
Article CAS PubMed Google Scholar
Farouk L, Laroubi A, Aboufatima R, Benharref A, Chait A (2008) Evaluation of the analgesic effect of alkaloid extract of Peganum harmala L.: possible mechanisms involved. J Ethnopharmacol 115(3):449–54. https://doi.org/10.1016/j.jep.2007.10.014
Article CAS PubMed Google Scholar
Farzin D, Mansouri N (2006) Antidepressant-like effect of harmane and other beta-carbolines in the mouse forced swim test. Eur Neuropsychopharmacol 16(5):324–328. https://doi.org/10.1016/j.euroneuro.2005.08.005
Article CAS PubMed Google Scholar
Fortunato JJ, Réus GZ, Kirsch TR, Stringari RB, Stertz L, Kapczinski F, Pinto JP, Hallak JE, Zuardi AW, Crippa JA, Quevedo J (2009) Acute harmine administration induces antidepressive-like effects and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 13(8):1425–1430. https://doi.org/10.1016/j.pnpbp.2009.07.021
Fortunato JJ, Réus GZ, Kirsch TR, Stringari RB, Fries GR, Kapczinski F, Hallak JE, Zuardi AW, Crippa JA, Quevedo J (2010a) Effects of beta-carboline harmine on behavioral and physiological parameters observed in the chronic mild stress model: further evidence of antidepressant properties. Brain Res Bull 16(4–5):491–496. https://doi.org/10.1016/j.brainresbull.2009.09.008
Fortunato JJ, Réus GZ, Kirsch TR, Stringari RB, Fries GR, Kapczinski F, Hallak JE, Zuardi AW, Crippa JA, Quevedo J (2010b) Chronic administration of harmine elicits antidepressant-like effects and increases BDNF levels in rat hippocampus. J Neural Transm (Vienna) 117(10):1131–1137. https://doi.org/10.1007/s00702-010-0451-2
Article CAS PubMed Google Scholar
Gao C, Jiang J, Tan Y, Chen S (2023) Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 8(1):359. https://doi.org/10.1038/s41392-023-01588-0
Comments (0)