Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 71, 209–249 (2021). https://doi.org/10.3322/caac.21660.
Article CAS PubMed Google Scholar
Shen, H., Jin, Y., Zhao, H., Wu, M., Zhang, K., Wei, Z., Wang, X., Wang, Z., Li, Y., Yang, F., Wang, J., Chen, K.: Potential clinical utility of liquid biopsy in early-stage non-small cell lung cancer. BMC Med. 20, 480 (2022). https://doi.org/10.1186/s12916-022-02681-x.
Article CAS PubMed PubMed Central Google Scholar
Tong, H., Sun, J., Fang, J., Zhang, M., Liu, H., Xia, R., Zhou, W., Liu, K., Chen, X.: A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort Study. Front. Immunol. 13, (2022).
Mitselos, I.V., Christodoulou, D.K., Katsanos, K.H., Tsianos, E.V.: Role of wireless capsule endoscopy in the follow-up of inflammatory bowel disease. World J. Gastrointest. Endosc. 7, 643–651 (2015). https://doi.org/10.4253/wjge.v7.i6.643.
Article PubMed PubMed Central Google Scholar
Bueno, J., Landeras, L., Chung, J.H.: Updated Fleischner Society Guidelines for Managing Incidental Pulmonary Nodules: Common Questions and Challenging Scenarios. RadioGraphics. 38, 1337–1350 (2018). https://doi.org/10.1148/rg.2018180017.
Chen, G., Bai, T., Wen, L.-J., Li, Y.: Predictive model for the probability of malignancy in solitary pulmonary nodules: a meta-analysis. J. Cardiothorac. Surg. 17, 102 (2022). https://doi.org/10.1186/s13019-022-01859-x.
Article PubMed PubMed Central Google Scholar
Cruickshank, A., Stieler, G., Ameer, F.: Evaluation of the solitary pulmonary nodule. Intern. Med. J. 49, 306–315 (2019). https://doi.org/10.1111/imj.14219.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need, http://arxiv.org/abs/1706.03762, (2017). https://doi.org/10.48550/arXiv.1706.03762.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, http://arxiv.org/abs/2010.11929, (2021). https://doi.org/10.48550/arXiv.2010.11929.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, http://arxiv.org/abs/2103.14030, (2021). https://doi.org/10.48550/arXiv.2103.14030.
Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation, http://arxiv.org/abs/2105.05537, (2021). https://doi.org/10.48550/arXiv.2105.05537.
Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation, http://arxiv.org/abs/2102.04306, (2021). https://doi.org/10.48550/arXiv.2102.04306.
Tang, Y., Yang, D., Li, W., Roth, H., Landman, B., Xu, D., Nath, V., Hatamizadeh, A.: Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis, http://arxiv.org/abs/2111.14791, (2022). https://doi.org/10.48550/arXiv.2111.14791.
Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., Roth, H., Xu, D.: UNETR: Transformers for 3D Medical Image Segmentation, http://arxiv.org/abs/2103.10504, (2021). https://doi.org/10.48550/arXiv.2103.10504.
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H., Xu, D.: Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images, http://arxiv.org/abs/2201.01266, (2022). https://doi.org/10.48550/arXiv.2201.01266.
Peiris, H., Hayat, M., Chen, Z., Egan, G., Harandi, M.: A Robust Volumetric Transformer for Accurate 3D Tumor Segmentation, http://arxiv.org/abs/2111.13300, (2022). https://doi.org/10.48550/arXiv.2111.13300.
Jo, S., Yu, I.-J.: Puzzle-CAM: Improved localization via matching partial and full features. In: 2021 IEEE International Conference on Image Processing (ICIP). pp. 639–643 (2021). https://doi.org/10.1109/ICIP42928.2021.9506058.
Cardoso, M.J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., Murrey, B., Myronenko, A., Zhao, C., Yang, D., Nath, V., He, Y., Xu, Z., Hatamizadeh, A., Myronenko, A., Zhu, W., Liu, Y., Zheng, M., Tang, Y., Yang, I., Zephyr, M., Hashemian, B., Alle, S., Darestani, M.Z., Budd, C., Modat, M., Vercauteren, T., Wang, G., Li, Y., Hu, Y., Fu, Y., Gorman, B., Johnson, H., Genereaux, B., Erdal, B.S., Gupta, V., Diaz-Pinto, A., Dourson, A., Maier-Hein, L., Jaeger, P.F., Baumgartner, M., Kalpathy-Cramer, J., Flores, M., Kirby, J., Cooper, L.A.D., Roth, H.R., Xu, D., Bericat, D., Floca, R., Zhou, S.K., Shuaib, H., Farahani, K., Maier-Hein, K.H., Aylward, S., Dogra, P., Ourselin, S., Feng, A.: MONAI: An open-source framework for deep learning in healthcare, http://arxiv.org/abs/2211.02701, (2022). https://doi.org/10.48550/arXiv.2211.02701.
Loshchilov, I., Hutter, F.: Decoupled Weight Decay Regularization, http://arxiv.org/abs/1711.05101, (2019). https://doi.org/10.48550/arXiv.1711.05101.
Loshchilov, I., Hutter, F.: SGDR: Stochastic Gradient Descent with Warm Restarts, http://arxiv.org/abs/1608.03983, (2017). https://doi.org/10.48550/arXiv.1608.03983.
Jiang, P.-T., Zhang, C.-B., Hou, Q., Cheng, M.-M., Wei, Y.: LayerCAM: Exploring Hierarchical Class Activation Maps for Localization. IEEE Trans. Image Process. 30, 5875–5888 (2021). https://doi.org/10.1109/TIP.2021.3089943.
Antonelli, M., Reinke, A., Bakas, S., Farahani, K., AnnetteKopp-Schneider, Landman, B.A., Litjens, G., Menze, B., Ronneberger, O., Summers, R.M., van Ginneken, B., Bilello, M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M.J., Heckers, S.H., Huisman, H., Jarnagin, W.R., McHugo, M.K., Napel, S., Pernicka, J.S.G., Rhode, K., Tobon-Gomez, C., Vorontsov, E., Huisman, H., Meakin, J.A., Ourselin, S., Wiesenfarth, M., Arbelaez, P., Bae, B., Chen, S., Daza, L., Feng, J., He, B., Isensee, F., Ji, Y., Jia, F., Kim, N., Kim, I., Merhof, D., Pai, A., Park, B., Perslev, M., Rezaiifar, R., Rippel, O., Sarasua, I., Shen, W., Son, J., Wachinger, C., Wang, L., Wang, Y., Xia, Y., Xu, D., Xu, Z., Zheng, Y., Simpson, A.L., Maier-Hein, L., Cardoso, M.J.: The Medical Segmentation Decathlon. Nat. Commun. 13, 4128 (2022). https://doi.org/10.1038/s41467-022-30695-9.
Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister, H., Ni, B.: MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification. Sci. Data. 10, 41 (2023). https://doi.org/10.1038/s41597-022-01721-8.
Article PubMed PubMed Central Google Scholar
Jin, L., Yang, J., Kuang, K., Ni, B., Gao, Y., Sun, Y., Gao, P., Ma, W., Tan, M., Kang, H., Chen, J., Li, M.: Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet. eBioMedicine. 62, 103106 (2020). https://doi.org/10.1016/j.ebiom.2020.103106.
Fan, J., Bocus, M.J., Hosking, B., Wu, R., Liu, Y., Vityazev, S., Fan, R.: Multi-Scale Feature Fusion: Learning Better Semantic Segmentation for Road Pothole Detection. In: 2021 IEEE International Conference on Autonomous Systems (ICAS). pp. 1–5 (2021). https://doi.org/10.1109/ICAS49788.2021.9551165.
Yang, X., He, J., Wang, J., Li, W., Liu, C., Gao, D., Guan, Y.: CT-based radiomics signature for differentiating solitary granulomatous nodules from solid lung adenocarcinoma. Lung Cancer. 125, 109–114 (2018). https://doi.org/10.1016/j.lungcan.2018.09.013.
Feng, B., Chen, X., Chen, Y., Lu, S., Liu, K., Li, K., Liu, Z., Hao, Y., Li, Z., Zhu, Z., Yao, N., Liang, G., Zhang, J., Long, W., Liu, X.: Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Eur. Radiol. 30, 6497–6507 (2020). https://doi.org/10.1007/s00330-020-07024-z.
A COVID-19 medical image classification algorithm based on Transformer | Scientific Reports, https://www.nature.com/articles/s41598-023-32462-2, last accessed 2024/01/10.
Dai, Y., Gao, Y.: TransMed: Transformers Advance Multi-modal Medical Image Classification, https://arxiv.org/abs/2103.05940v1, last accessed 2024/01/10.
Wu, P., Chen, J., Wu, Y.: Swin transformer based benign and malignant pulmonary nodule classification. In: 5th International Conference on Computer Information Science and Application Technology (CISAT 2022). pp. 552–558. SPIE (2022). https://doi.org/10.1117/12.2656809.
Xiong, Y., Du, B., Xu, Y., Deng, J., She, Y., Chen, C.: Pulmonary Nodule Classification with Multi-View Convolutional Vision Transformer. In: 2022 International Joint Conference on Neural Networks (IJCNN). pp. 1–7 (2022). https://doi.org/10.1109/IJCNN55064.2022.9892716.
Comments (0)