Prediction of Malignancy and Pathological Types of Solid Lung Nodules on CT Scans Using a Volumetric SWIN Transformer

Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 71, 209–249 (2021). https://doi.org/10.3322/caac.21660.

Article  CAS  PubMed  Google Scholar 

Shen, H., Jin, Y., Zhao, H., Wu, M., Zhang, K., Wei, Z., Wang, X., Wang, Z., Li, Y., Yang, F., Wang, J., Chen, K.: Potential clinical utility of liquid biopsy in early-stage non-small cell lung cancer. BMC Med. 20, 480 (2022). https://doi.org/10.1186/s12916-022-02681-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tong, H., Sun, J., Fang, J., Zhang, M., Liu, H., Xia, R., Zhou, W., Liu, K., Chen, X.: A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort Study. Front. Immunol. 13, (2022).

Mitselos, I.V., Christodoulou, D.K., Katsanos, K.H., Tsianos, E.V.: Role of wireless capsule endoscopy in the follow-up of inflammatory bowel disease. World J. Gastrointest. Endosc. 7, 643–651 (2015). https://doi.org/10.4253/wjge.v7.i6.643.

Article  PubMed  PubMed Central  Google Scholar 

Bueno, J., Landeras, L., Chung, J.H.: Updated Fleischner Society Guidelines for Managing Incidental Pulmonary Nodules: Common Questions and Challenging Scenarios. RadioGraphics. 38, 1337–1350 (2018). https://doi.org/10.1148/rg.2018180017.

Article  PubMed  Google Scholar 

Chen, G., Bai, T., Wen, L.-J., Li, Y.: Predictive model for the probability of malignancy in solitary pulmonary nodules: a meta-analysis. J. Cardiothorac. Surg. 17, 102 (2022). https://doi.org/10.1186/s13019-022-01859-x.

Article  PubMed  PubMed Central  Google Scholar 

Cruickshank, A., Stieler, G., Ameer, F.: Evaluation of the solitary pulmonary nodule. Intern. Med. J. 49, 306–315 (2019). https://doi.org/10.1111/imj.14219.

Article  PubMed  Google Scholar 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need, http://arxiv.org/abs/1706.03762, (2017). https://doi.org/10.48550/arXiv.1706.03762.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, http://arxiv.org/abs/2010.11929, (2021). https://doi.org/10.48550/arXiv.2010.11929.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, http://arxiv.org/abs/2103.14030, (2021). https://doi.org/10.48550/arXiv.2103.14030.

Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation, http://arxiv.org/abs/2105.05537, (2021). https://doi.org/10.48550/arXiv.2105.05537.

Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation, http://arxiv.org/abs/2102.04306, (2021). https://doi.org/10.48550/arXiv.2102.04306.

Tang, Y., Yang, D., Li, W., Roth, H., Landman, B., Xu, D., Nath, V., Hatamizadeh, A.: Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis, http://arxiv.org/abs/2111.14791, (2022). https://doi.org/10.48550/arXiv.2111.14791.

Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., Roth, H., Xu, D.: UNETR: Transformers for 3D Medical Image Segmentation, http://arxiv.org/abs/2103.10504, (2021). https://doi.org/10.48550/arXiv.2103.10504.

Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H., Xu, D.: Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images, http://arxiv.org/abs/2201.01266, (2022). https://doi.org/10.48550/arXiv.2201.01266.

Peiris, H., Hayat, M., Chen, Z., Egan, G., Harandi, M.: A Robust Volumetric Transformer for Accurate 3D Tumor Segmentation, http://arxiv.org/abs/2111.13300, (2022). https://doi.org/10.48550/arXiv.2111.13300.

Jo, S., Yu, I.-J.: Puzzle-CAM: Improved localization via matching partial and full features. In: 2021 IEEE International Conference on Image Processing (ICIP). pp. 639–643 (2021). https://doi.org/10.1109/ICIP42928.2021.9506058.

Cardoso, M.J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., Murrey, B., Myronenko, A., Zhao, C., Yang, D., Nath, V., He, Y., Xu, Z., Hatamizadeh, A., Myronenko, A., Zhu, W., Liu, Y., Zheng, M., Tang, Y., Yang, I., Zephyr, M., Hashemian, B., Alle, S., Darestani, M.Z., Budd, C., Modat, M., Vercauteren, T., Wang, G., Li, Y., Hu, Y., Fu, Y., Gorman, B., Johnson, H., Genereaux, B., Erdal, B.S., Gupta, V., Diaz-Pinto, A., Dourson, A., Maier-Hein, L., Jaeger, P.F., Baumgartner, M., Kalpathy-Cramer, J., Flores, M., Kirby, J., Cooper, L.A.D., Roth, H.R., Xu, D., Bericat, D., Floca, R., Zhou, S.K., Shuaib, H., Farahani, K., Maier-Hein, K.H., Aylward, S., Dogra, P., Ourselin, S., Feng, A.: MONAI: An open-source framework for deep learning in healthcare, http://arxiv.org/abs/2211.02701, (2022). https://doi.org/10.48550/arXiv.2211.02701.

Loshchilov, I., Hutter, F.: Decoupled Weight Decay Regularization, http://arxiv.org/abs/1711.05101, (2019). https://doi.org/10.48550/arXiv.1711.05101.

Loshchilov, I., Hutter, F.: SGDR: Stochastic Gradient Descent with Warm Restarts, http://arxiv.org/abs/1608.03983, (2017). https://doi.org/10.48550/arXiv.1608.03983.

Jiang, P.-T., Zhang, C.-B., Hou, Q., Cheng, M.-M., Wei, Y.: LayerCAM: Exploring Hierarchical Class Activation Maps for Localization. IEEE Trans. Image Process. 30, 5875–5888 (2021). https://doi.org/10.1109/TIP.2021.3089943.

Article  PubMed  Google Scholar 

Antonelli, M., Reinke, A., Bakas, S., Farahani, K., AnnetteKopp-Schneider, Landman, B.A., Litjens, G., Menze, B., Ronneberger, O., Summers, R.M., van Ginneken, B., Bilello, M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M.J., Heckers, S.H., Huisman, H., Jarnagin, W.R., McHugo, M.K., Napel, S., Pernicka, J.S.G., Rhode, K., Tobon-Gomez, C., Vorontsov, E., Huisman, H., Meakin, J.A., Ourselin, S., Wiesenfarth, M., Arbelaez, P., Bae, B., Chen, S., Daza, L., Feng, J., He, B., Isensee, F., Ji, Y., Jia, F., Kim, N., Kim, I., Merhof, D., Pai, A., Park, B., Perslev, M., Rezaiifar, R., Rippel, O., Sarasua, I., Shen, W., Son, J., Wachinger, C., Wang, L., Wang, Y., Xia, Y., Xu, D., Xu, Z., Zheng, Y., Simpson, A.L., Maier-Hein, L., Cardoso, M.J.: The Medical Segmentation Decathlon. Nat. Commun. 13, 4128 (2022). https://doi.org/10.1038/s41467-022-30695-9.

Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister, H., Ni, B.: MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification. Sci. Data. 10, 41 (2023). https://doi.org/10.1038/s41597-022-01721-8.

Article  PubMed  PubMed Central  Google Scholar 

Jin, L., Yang, J., Kuang, K., Ni, B., Gao, Y., Sun, Y., Gao, P., Ma, W., Tan, M., Kang, H., Chen, J., Li, M.: Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet. eBioMedicine. 62, 103106 (2020). https://doi.org/10.1016/j.ebiom.2020.103106.

Fan, J., Bocus, M.J., Hosking, B., Wu, R., Liu, Y., Vityazev, S., Fan, R.: Multi-Scale Feature Fusion: Learning Better Semantic Segmentation for Road Pothole Detection. In: 2021 IEEE International Conference on Autonomous Systems (ICAS). pp. 1–5 (2021). https://doi.org/10.1109/ICAS49788.2021.9551165.

Yang, X., He, J., Wang, J., Li, W., Liu, C., Gao, D., Guan, Y.: CT-based radiomics signature for differentiating solitary granulomatous nodules from solid lung adenocarcinoma. Lung Cancer. 125, 109–114 (2018). https://doi.org/10.1016/j.lungcan.2018.09.013.

Article  PubMed  Google Scholar 

Feng, B., Chen, X., Chen, Y., Lu, S., Liu, K., Li, K., Liu, Z., Hao, Y., Li, Z., Zhu, Z., Yao, N., Liang, G., Zhang, J., Long, W., Liu, X.: Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Eur. Radiol. 30, 6497–6507 (2020). https://doi.org/10.1007/s00330-020-07024-z.

Article  PubMed  Google Scholar 

A COVID-19 medical image classification algorithm based on Transformer | Scientific Reports, https://www.nature.com/articles/s41598-023-32462-2, last accessed 2024/01/10.

Dai, Y., Gao, Y.: TransMed: Transformers Advance Multi-modal Medical Image Classification, https://arxiv.org/abs/2103.05940v1, last accessed 2024/01/10.

Wu, P., Chen, J., Wu, Y.: Swin transformer based benign and malignant pulmonary nodule classification. In: 5th International Conference on Computer Information Science and Application Technology (CISAT 2022). pp. 552–558. SPIE (2022). https://doi.org/10.1117/12.2656809.

Xiong, Y., Du, B., Xu, Y., Deng, J., She, Y., Chen, C.: Pulmonary Nodule Classification with Multi-View Convolutional Vision Transformer. In: 2022 International Joint Conference on Neural Networks (IJCNN). pp. 1–7 (2022). https://doi.org/10.1109/IJCNN55064.2022.9892716.

Comments (0)

No login
gif