Deep Learning–Based Estimation of Radiographic Position to Automatically Set Up the X-Ray Prime Factors

Panzer, W., P. Shrimpton, Jessen K.: European Guidelines on Quality Criteria for Computed Tomography. Office for Official Publications of the European Communities, 2020

Foos, D. H., Sehnert, W. J., Reiner, B., Siegel, E. L., Segal, A., Waldman, D. L.: Digital radiography reject analysis: data collection methodology, results, and recommendations from an in-depth investigation at two hospitals. Journal of digital imaging: 22, 89–98, 2009

Article  PubMed  Google Scholar 

Bushberg, J. T., Boone J. M.: The essential physics of medical imaging, Lippincott Williams & Wilkins, 2011

Fang, X., Harris, L., Zhou, W., and Huo, D., Generalized radiographic view identification with deep learning. Journal of Digital Imaging: 34(1), 66–74, 2021

Article  PubMed  Google Scholar 

Mairhöfer, D., Laufer, M., Simon, P. M., Sieren, M., Bischof, A., Käster, T., Barth E., Barkhausen J., Martinetz, T.: An AI-based framework for diagnostic quality assessment of ankle radiographs. International Conference on Medical Imaging with Deep Learning, 2021

Simonyan, K., Zisserman A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition: 770–778, 2016

Kim, T. K., Yi, P. H., Wei, J., Shin, J. W., Hager, G., Hui, F. K., Sair, H. I., Lin, C. T.: Deep learning method for automated classification of anteroposterior and posteroanterior chest radiographs. Journal of digital imaging: 32, 925–930, 2019

Hosch, R., Kroll, L., Nensa, F., Koitka, S.: Differentiation between anteroposterior and posteroanterior chest X-ray view position with convolutional neural networks. In RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren: 193(2), 168–176, 2021

Saun, T.J.: Automated classification of radiographic positioning of hand X-rays using a deep neural network. Plastic Surgery: 29(2), 75–80, 2021

Article  PubMed  PubMed Central  Google Scholar 

Wang, C. Y., Yeh, I. H., Liao, H. Y. M.: Yolov9: Learning what you want to learn using programmable gradient information. arXiv preprint arXiv:2402.13616, 2024

Medaramatla, S. C., Samhitha, C. V., Pande, S. D., Vinta, S. R.: Detection of Hand Bone Fractures in X-ray Images using Hybrid YOLO NAS. IEEE Accessed 2024

Zheng, C., Wu, W., Chen, C., Yang, T., Zhu, S., Shen, J., Kehtarnavaz N., Shah, M.: Deep learning-based human pose estimation: A survey. ACM Computing Surveys: 56(1), 1–37, 2023

Kadkhodamohammadi, A., Gangi, A., de Mathelin, M., Padoy, N.: Articulated clinician detection using 3D pictorial structures on RGB-D data. Medical image analysis: 35, 215–224, 2017

Article  PubMed  Google Scholar 

Srivastav V., Gangi A., and Padoy N.: Unsupervised domain adaptation for clinician pose estimation and instance segmentation in the operating room. Medical Image Analysis: 80, 102525, 2022

Article  PubMed  Google Scholar 

Bigalke, A., Hansen, L., Diesel, J., Hennigs, C., Rostalski, P., Heinrich, M. P.: Anatomy-guided domain adaptation for 3D in-bed human pose estimation. Medical Image Analysis: 89, 102887, 2023

Article  PubMed  Google Scholar 

Ni, H., Xue, Y., Ma, L., Zhang, Q., Li, X., Huang, S. X.: Semi-supervised body parsing and pose estimation for enhancing infant general movement assessment. Medical Image Analysis: 83, 102654, 2023

Article  PubMed  Google Scholar 

Ogundokun, R. O., Maskeliūnas, R., Damaševičius, R.: Human posture detection using image augmentation and hyperparameter-optimized transfer learning algorithms. Applied Sciences: 12(19), 10156, 2022

Article  CAS  Google Scholar 

Liu, Z., Mao, H., Wu, C. Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition: 11976–11986, 2022

Wightman, R.: PyTorch Image Models. Availble at GitHub https://github.com/huggingface/pytorch-image-models. Accessed June 2024

Wright, L.: New deep learning optimizer, ranger: Synergistic combination of radam+ lookahead for the best of both. Availabl at Github https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer. Accessed Aug 2023

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition: 248–255, 2009

Smith, L. N.: Cyclical learning rates for training neural networks. In 2017 IEEE winter conference on applications of computer vision (WACV): 464–472, 2017

Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146, 2018

Paszke, A., Gross, S., Chintala S., Chanan G., Yang E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In proceedings of the Conference on Neural Information Processing Systems (NIPS), 2017

Howard, J., Gugger S.: Fastai: A layered API for deep learning. Information: 11(2), 108, 2020

Article  Google Scholar 

Bradski, G.: The openCV library. Dr. Dobb's Journal: Software Tools for the Professional Programmer: 25(11), 120–123, 2000

Li, Y., Hu, J., Wen, Y., Evangelidis, G., Salahi, K., Wang, Y., Tulyakov, S., Ren, J.: Rethinking vision transformers for mobilenet size and speed. In Proceedings of the IEEE/CVF International Conference on Computer Vision:16889–16900, 2023

Qin, D., Leichner, C., Delakis, M., Fornoni, M., Luo, S., Yang, F., Wang, W., Banbury, C., Ye, C., Akin, B., Aggarwal, V., Zhu, T., Moro, D., Howard, A.: MobileNetV4-Universal Models for the Mobile Ecosystem. arXiv preprint arXiv:2404.10518, 2024

Bouwmans, T., Javed, S., Sultana, M., Jung, S. K.: Deep neural network concepts for background subtraction: A systematic review and comparative evaluation. Neural Networks: 117, 8–66, 2019

Article  PubMed  Google Scholar 

England, N., Improvement N.: Diagnostic imaging dataset statistical release, in London. Department of Health, 2023

Comments (0)

No login
gif