Delaney G, Jacob S, Featherstone C, Barton M: The role of radiotherapy in cancer treatment. Cancer 104(6):1129-1137, 2005
Yue M, Xue X, Wang Z, Lambo RL, Zhao W, Xie Y, Cai J, Qin W: Dose prediction via distance-guided deep learning: Initial development for nasopharyngeal carcinoma radiotherapy. Radiother Oncol 170:198-204, 2022
Kontaxis C, Bol GH, Lagendijk JJW, Raaymakers BW: DeepDose: Towards a fast dose calculation engine for radiation therapy using deep learning. Phys Med Biol 65(7):075013, 2020
Kandalan RN, Nguyen D, Rezaeian NH, Barragán-Montero AM, Breedveld S, Namuduri K, Jiang S, Lin MH: Dose prediction with deep learning for prostate cancer radiation therapy: Model adaptation to different treatment planning practices. Radiother Oncol 153:228-235, 2020
Hu J, Song Y, Wang Q, Bai S, Yi Z: Incorporating historical sub-optimal deep neural networks for dose prediction in radiotherapy. Med Image Anal 67:101886, 2021
Zou Z, Gong C, Zeng L, Guan Y, Huang B, Yu X, Liu Q, Zhang M: Invertible and Variable Augmented Network for Pretreatment Patient-Specific Quality Assurance Dose Prediction. J Imaging Inform Med 37(1):60-71, 2024
Article PubMed PubMed Central Google Scholar
Sanaei B, Faghihi R, Arabi H: Employing Multiple Low-Dose PET Images (at Different Dose Levels) as Prior Knowledge to Predict Standard-Dose PET Images. J Digit Imaging 36(4):1588-1596, 2023
Article PubMed PubMed Central Google Scholar
Song Y, Hu J, Liu Y, Hu H, Huang Y, Bai S, Yi Z: Dose prediction using a deep neural network for accelerated planning of rectal cancer radiotherapy. Radiother Oncol 149:111-116, 2020
Article CAS PubMed Google Scholar
Daoud B, Morooka K, Miyauchi S, Kurazume R, Mnejja W, Farhat L, Daoud J: Dose Distribution Prediction for Optimal Treamtment of Modern External Beam Radiation Therapy for Nasopharyngeal Carcinoma. In Artificial Intelligence in Radiation Therapy: First International Workshop 2019:128-136, 2019
Liu Z, Fan J, Li M, Yan H, Hu Z, Huang P, Tian Y, Miao J, Dai J: A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy. Med Phys 46(5):1972-1983, 2019
Jiao Z, Peng X, Wang Y, Xiao J, Nie D, Wu X, Wang X, Zhou J, Shen D: TransDose: Transformer-based radiotherapy dose prediction from CT images guided by super-pixel-level GCN classification. Med Image Anal 89:102902, 2023
Jiang D, Yan H, Chang N, Li T, Mao R, Du C, Guo B, Liu J: Convolutional neural network-based dosimetry evaluation of esophageal radiation treatment planning. Med Phys 47(10):4735-4742, 2020
Li X, Zhang J, Sheng Y, Chang Y, Yin F, Ge Y, Wu QJ, Wang C: Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning. Phys Med Biol 65(17):175014, 2020
Zhang J, Wu QJ, Ge Y, Wang C, Sheng Y, Palta J, Salama JK, Yin F, Zhang J: Knowledge-Based Statistical Inference Method for Plan Quality Quantification. Technol Cancer Res Treat 18:1533033819857758, 2019
Article PubMed PubMed Central Google Scholar
Zhang J, Ge Y, Sheng Y, Wang C, Zhang J, Wu Y, Wu Q, Yin F, Wu QJ: Knowledge-Based Tradeoff Hyperplanes for Head and Neck Treatment Planning. Int J Radiat Oncol Biol Phys 106(5):1095-1103, 2020
Article PubMed PubMed Central Google Scholar
Yuan L, Ge Y, Lee WR, Yin F, Kirkpatrick JP, Wu QJ: Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans. Med Phys 39(11):6868-6878, 2012
Zhang J, Ge Y, Sheng Y, Yin F, Wu QJ: Modeling of multiple planning target volumes for head and neck treatments in knowledge-based treatment planning. Med Phys 46(9):3812-3822, 2019
Article PubMed PubMed Central Google Scholar
Wang W, Sheng Y, Wang C, Zhang J, Li X, Palta M, Czito B, Willett CG, Wu Q, Ge Y, Yin F, Wu QJ: Fluence Map Prediction Using Deep Learning Models - Direct Plan Generation for Pancreas Stereotactic Body Radiation Therapy. Front Artif Intell 3:68, 2020
Article PubMed PubMed Central Google Scholar
Sumida I, Magome T, Das IJ, Yamaguchi H, Kizaki H, Aboshi K, Yamaguchi H, Seo Y, Isohashi F, Ogawa K: A convolution neural network for higher resolution dose prediction in prostate volumetric modulated arc therapy. Phys Med 72:88-95, 2020
Shao Y, Zhang X, Wu G, Gu Q, Wang J, Ying Y, Feng A, Xie G, Kong Q, Xu Z: Prediction of Three-Dimensional Radiotherapy Optimal Dose Distributions for Lung Cancer Patients With Asymmetric Network. IEEE J Biomed Health Inform 25(4):1120-1127, 2021
Zhou J, Peng Z, Song Y, Chang Y, Pei X, Sheng L, Xu XG: A method of using deep learning to predict three-dimensional dose distributions for intensity-modulated radiotherapy of rectal cancer. J Appl Clin Med Phys 21(5):26-37, 2020
Article PubMed PubMed Central Google Scholar
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ: Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition 2017:4700-4708, 2017
Nguyen D, Jia X, Sher D, Lin MH, Iqbal Z, Liu H, Jiang S: 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. Phys Med Biol 64(6):065020, 2019
Liu S, Zhang J, Li T, Yan H, Liu J: Technical Note: A cascade 3D U-Net for dose prediction in radiotherapy. Med Phys 48(9):5574-5582, 2021
Article CAS PubMed Google Scholar
Hu C, Wang H, Zhang W, Xie Y, Jiao L, Cui S: TrDosePred: A deep learning dose prediction algorithm based on transformers for head and neck cancer radiotherapy. J Appl Clin Med Phys 24(7):e13942, 2023
Article PubMed PubMed Central Google Scholar
Zhang J, Liu S, Yan H, Li T, Mao R, Liu J: Predicting voxel-level dose distributions for esophageal radiotherapy using densely connected network with dilated convolutions. Phys Med Biol 65(20):205013, 2020
Kearney V, Chan JW, Wang T, Perry A, Solberg TD: DoseGAN: a generative adversarial network for synthetic dose prediction using attention-gated discrimination and generation. Sci Rep 10(1):11073, 2020
Article CAS PubMed PubMed Central Google Scholar
Babier A, Mahmood R, McNiven AL, Diamant A, Chan TCY: Knowledge-based automated planning with three-dimensional generative adversarial networks. Med Phys 47(2):297-306, 2020
Kummanee P, Chancharoen W, Tangtisanon K, Fuangrod T: Predicting Three-Dimensional Dose Distribution of Prostate Volumetric Modulated Arc Therapy Using Deep Learning. Life 11(12):1305, 2021
Article PubMed PubMed Central Google Scholar
Murakami Y, Magome T, Matsumoto K, Sato T, Yoshioka Y, Oguchi M: Fully automated dose prediction using generative adversarial networks in prostate cancer patients. PLoS One 15(5):1-16, 2020
Zhang B, Babier A, Chan TCY, Ruschin M: 3D dose prediction for Gamma Knife radiosurgery using deep learning and data modification. Phys Med 106:102533, 2023
Liang M, Hu X: Recurrent Convolutional Neural Network for Object Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2015:3367-3375, 2015
Nguyen D, Long T, Jia X, Lu W, Gu X, Iqbal Z, Jiang S: A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep 9(1):1076, 2019
Article PubMed PubMed Central Google Scholar
Hu J, Shen L, Sun G: Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018:7132-7141, 2018
Hyeon-Woo N, Yu-Ji K, Heo B, Han D, Oh SJ, Oh TH: Scratching Visual Transformer’s Back with Uniform Attention. In Proceedings of the IEEE/CVF International Conference on Computer Vision 2023:5807-5818, 2023
Zhao H, Gallo O, Frosio I, Kautz J: Loss functions for image restoration with neural networks. IEEE Trans Comput Imaging 3(1):47-57, 2017
Kearney V, Chan JW, Haaf S, Descovich M, Solberg TD: DoseNet: a volumetric dose prediction algorithm using 3D fully-convolutional neural networks. Phys Med Biol 63(23):235022, 2018
Comments (0)