Spiral volumetric optoacoustic tomography of reduced oxygen saturation in the spinal cord of M83 mouse model of Parkinson’s disease

Global regional. Lancet Neurol. 2018;17:939–53. https://doi.org/10.1016/s1474-4422(18)30295-3. and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016.

Guo M, Ji X, Liu J. Hypoxia and Alpha-Synuclein: Inextricable Link underlying the pathologic progression of Parkinson’s Disease. Front Aging Neurosci. 2022;14:919343. https://doi.org/10.3389/fnagi.2022.919343.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lestón Pinilla L, Ugun-Klusek A, Rutella S, De Girolamo LA. Hypoxia Signaling in Parkinson’s Disease: There Is Use in Asking What HIF? Biology (Basel). 2021;10. https://doi.org/10.3390/biology10080723.

Melzer TR, Watts R, MacAskill MR, Pearson JF, Rüeger S, Pitcher TL, et al. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson’s disease. Brain. 2011;134:845–55. https://doi.org/10.1093/brain/awq377.

Article  PubMed  PubMed Central  Google Scholar 

Pang SY-Y, Ho PW-L, Liu H-F, Leung C-T, Li L, Chang EES, et al. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease. Translational Neurodegeneration. 2019;8:23. https://doi.org/10.1186/s40035-019-0165-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19:170–8. https://doi.org/10.1016/s1474-4422(19)30287-x.

Article  CAS  PubMed  Google Scholar 

Murata H, Barnhill LM, Bronstein JM. Air Pollution and the risk of Parkinson’s disease: a review. Mov Disord. 2022;37:894–904. https://doi.org/10.1002/mds.28922.

Article  PubMed  PubMed Central  Google Scholar 

Hatcher JM, Pennell KD, Miller GW. Parkinson’s disease and pesticides: a toxicological perspective. Trends Pharmacol Sci. 2008;29:322–9. https://doi.org/10.1016/j.tips.2008.03.007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burtscher J, Duderstadt Y, Gatterer H, Burtscher M, Vozdek R, Millet GP, et al. Hypoxia Sensing and Responses in Parkinson’s Disease. Int J Mol Sci. 2024;25. https://doi.org/10.3390/ijms25031759.

Visser AE, de Vries NM, Richard E, Bloem BR. Tackling vascular risk factors as a possible disease modifying intervention in Parkinson’s disease. NPJ Parkinsons Dis. 2024;10:50. https://doi.org/10.1038/s41531-024-00666-6.

Article  PubMed  PubMed Central  Google Scholar 

Kummer BR, Diaz I, Wu X, Aaroe AE, Chen ML, Iadecola C, et al. Associations between cerebrovascular risk factors and parkinson disease. Ann Neurol. 2019;86:572–81. https://doi.org/10.1002/ana.25564.

Article  PubMed  PubMed Central  Google Scholar 

Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4. https://doi.org/10.1038/ncb748.

Article  CAS  PubMed  Google Scholar 

Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 2006;281:29739–52. https://doi.org/10.1074/jbc.M600933200.

Article  CAS  PubMed  Google Scholar 

Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211. https://doi.org/10.1016/s0197-4580(02)00065-9.

Article  PubMed  Google Scholar 

Landelle C, Dahlberg LS, Lungu O, Misic B, De Leener B, Doyon J. Altered Spinal Cord Functional Connectivity Associated with Parkinson’s Disease Progression. Mov Disord. 2023;38:636–45. https://doi.org/10.1002/mds.29354.

Article  CAS  PubMed  Google Scholar 

Braak H, Del Tredici K. Neuropathological staging of Brain Pathology in sporadic Parkinson’s disease: separating the wheat from the Chaff. J Parkinsons Dis. 2017;7:S71–85. https://doi.org/10.3233/jpd-179001.

Article  PubMed  PubMed Central  Google Scholar 

Del Tredici K, Braak H. Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathol. 2012;124:643–64. https://doi.org/10.1007/s00401-012-1028-y.

Article  CAS  PubMed  Google Scholar 

Guo M, Liu W, Luo H, Shao Q, Li Y, Gu Y, et al. Hypoxic stress accelerates the propagation of pathological alpha-synuclein and degeneration of dopaminergic neurons. CNS Neurosci Ther. 2023;29:544–58. https://doi.org/10.1111/cns.14055.

Article  CAS  PubMed  Google Scholar 

Li G, Liu J, Guo M, Gu Y, Guan Y, Shao Q, et al. Chronic hypoxia leads to cognitive impairment by promoting HIF-2α-mediated ceramide catabolism and alpha-synuclein hyperphosphorylation. Cell Death Discovery. 2022;8:473. https://doi.org/10.1038/s41420-022-01260-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim T, Mehta SL, Kaimal B, Lyons K, Dempsey RJ, Vemuganti R. Poststroke induction of α-Synuclein mediates ischemic brain damage. J Neurosci. 2016;36:7055–65. https://doi.org/10.1523/jneurosci.1241-16.2016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun HL, Sun BL, Chen DW, Chen Y, Li WW, Xu MY, et al. Plasma α-synuclein levels are increased in patients with obstructive sleep apnea syndrome. Ann Clin Transl Neurol. 2019;6:788–94. https://doi.org/10.1002/acn3.756.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer BP, Hirschler L, Lee S, Kurpad SN, Warnking JM, Barbier EL, et al. Optimized cervical spinal cord perfusion MRI after traumatic injury in the rat. J Cereb Blood Flow Metab. 2021;41:2010–25. https://doi.org/10.1177/0271678x20982396.

Article  PubMed  PubMed Central  Google Scholar 

Matsubayashi K, Nagoshi N, Komaki Y, Kojima K, Shinozaki M, Tsuji O, et al. Assessing cortical plasticity after spinal cord injury by using resting-state functional magnetic resonance imaging in awake adult mice. Sci Rep. 2018;8:14406. https://doi.org/10.1038/s41598-018-32766-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laakso H, Lehto LJ, Paasonen J, Salo R, Canna A, Lavrov I, et al. Spinal cord fMRI with MB-SWIFT for assessing epidural spinal cord stimulation in rats. Magn Reson Med. 2021;86:2137–45. https://doi.org/10.1002/mrm.28844.

Article  PubMed  PubMed Central  Google Scholar 

Wu W, He S, Wu J, Chen C, Li X, Liu K, et al. Long-term in vivo imaging of mouse spinal cord through an optically cleared intervertebral window. Nat Commun. 2022;13:1959. https://doi.org/10.1038/s41467-022-29496-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esipova TV, Barrett MJP, Erlebach E, Masunov AE, Weber B, Vinogradov SA. Oxyphor 2P: a high-performance probe for deep-tissue longitudinal oxygen imaging. Cell Metab. 2019;29:736–e447. https://doi.org/10.1016/j.cmet.2018.12.022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mondal R, Campoy A-DT, Liang C, Mukherjee J. [18F]FDG PET/CT studies in transgenic hualpha-syn (A53T) Parkinson’s Disease Mouse Model of α-Synucleinopathy. Front NeuroSci. 2021;15:718.

Article  Google Scholar 

Harmon JN, Chandran P, Chandrasekaran A, Hyde JE, Hernandez GJ, Reed MJ, et al. Contrast-enhanced ultrasound imaging detects anatomical and functional changes in rat cervical spine microvasculature with normal aging. bioRxiv. 2024. https://doi.org/10.1101/2024.03.12.584672.

Article  PubMed  PubMed Central  Google Scholar 

Claron J, Hingot V, Rivals I, Rahal L, Couture O, Deffieux T, et al. Large-scale functional ultrasound imaging of the spinal cord reveals in-depth spatiotemporal responses of spinal nociceptive circuits in both normal and inflammatory states. Pain. 2021;162:1047–59. https://doi.org/10.1097/j.pain.0000000000002078.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif