Global regional. Lancet Neurol. 2018;17:939–53. https://doi.org/10.1016/s1474-4422(18)30295-3. and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016.
Guo M, Ji X, Liu J. Hypoxia and Alpha-Synuclein: Inextricable Link underlying the pathologic progression of Parkinson’s Disease. Front Aging Neurosci. 2022;14:919343. https://doi.org/10.3389/fnagi.2022.919343.
Article CAS PubMed PubMed Central Google Scholar
Lestón Pinilla L, Ugun-Klusek A, Rutella S, De Girolamo LA. Hypoxia Signaling in Parkinson’s Disease: There Is Use in Asking What HIF? Biology (Basel). 2021;10. https://doi.org/10.3390/biology10080723.
Melzer TR, Watts R, MacAskill MR, Pearson JF, Rüeger S, Pitcher TL, et al. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson’s disease. Brain. 2011;134:845–55. https://doi.org/10.1093/brain/awq377.
Article PubMed PubMed Central Google Scholar
Pang SY-Y, Ho PW-L, Liu H-F, Leung C-T, Li L, Chang EES, et al. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease. Translational Neurodegeneration. 2019;8:23. https://doi.org/10.1186/s40035-019-0165-9.
Article CAS PubMed PubMed Central Google Scholar
Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19:170–8. https://doi.org/10.1016/s1474-4422(19)30287-x.
Article CAS PubMed Google Scholar
Murata H, Barnhill LM, Bronstein JM. Air Pollution and the risk of Parkinson’s disease: a review. Mov Disord. 2022;37:894–904. https://doi.org/10.1002/mds.28922.
Article PubMed PubMed Central Google Scholar
Hatcher JM, Pennell KD, Miller GW. Parkinson’s disease and pesticides: a toxicological perspective. Trends Pharmacol Sci. 2008;29:322–9. https://doi.org/10.1016/j.tips.2008.03.007.
Article CAS PubMed PubMed Central Google Scholar
Burtscher J, Duderstadt Y, Gatterer H, Burtscher M, Vozdek R, Millet GP, et al. Hypoxia Sensing and Responses in Parkinson’s Disease. Int J Mol Sci. 2024;25. https://doi.org/10.3390/ijms25031759.
Visser AE, de Vries NM, Richard E, Bloem BR. Tackling vascular risk factors as a possible disease modifying intervention in Parkinson’s disease. NPJ Parkinsons Dis. 2024;10:50. https://doi.org/10.1038/s41531-024-00666-6.
Article PubMed PubMed Central Google Scholar
Kummer BR, Diaz I, Wu X, Aaroe AE, Chen ML, Iadecola C, et al. Associations between cerebrovascular risk factors and parkinson disease. Ann Neurol. 2019;86:572–81. https://doi.org/10.1002/ana.25564.
Article PubMed PubMed Central Google Scholar
Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4. https://doi.org/10.1038/ncb748.
Article CAS PubMed Google Scholar
Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 2006;281:29739–52. https://doi.org/10.1074/jbc.M600933200.
Article CAS PubMed Google Scholar
Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211. https://doi.org/10.1016/s0197-4580(02)00065-9.
Landelle C, Dahlberg LS, Lungu O, Misic B, De Leener B, Doyon J. Altered Spinal Cord Functional Connectivity Associated with Parkinson’s Disease Progression. Mov Disord. 2023;38:636–45. https://doi.org/10.1002/mds.29354.
Article CAS PubMed Google Scholar
Braak H, Del Tredici K. Neuropathological staging of Brain Pathology in sporadic Parkinson’s disease: separating the wheat from the Chaff. J Parkinsons Dis. 2017;7:S71–85. https://doi.org/10.3233/jpd-179001.
Article PubMed PubMed Central Google Scholar
Del Tredici K, Braak H. Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathol. 2012;124:643–64. https://doi.org/10.1007/s00401-012-1028-y.
Article CAS PubMed Google Scholar
Guo M, Liu W, Luo H, Shao Q, Li Y, Gu Y, et al. Hypoxic stress accelerates the propagation of pathological alpha-synuclein and degeneration of dopaminergic neurons. CNS Neurosci Ther. 2023;29:544–58. https://doi.org/10.1111/cns.14055.
Article CAS PubMed Google Scholar
Li G, Liu J, Guo M, Gu Y, Guan Y, Shao Q, et al. Chronic hypoxia leads to cognitive impairment by promoting HIF-2α-mediated ceramide catabolism and alpha-synuclein hyperphosphorylation. Cell Death Discovery. 2022;8:473. https://doi.org/10.1038/s41420-022-01260-6.
Article CAS PubMed PubMed Central Google Scholar
Kim T, Mehta SL, Kaimal B, Lyons K, Dempsey RJ, Vemuganti R. Poststroke induction of α-Synuclein mediates ischemic brain damage. J Neurosci. 2016;36:7055–65. https://doi.org/10.1523/jneurosci.1241-16.2016.
Article CAS PubMed PubMed Central Google Scholar
Sun HL, Sun BL, Chen DW, Chen Y, Li WW, Xu MY, et al. Plasma α-synuclein levels are increased in patients with obstructive sleep apnea syndrome. Ann Clin Transl Neurol. 2019;6:788–94. https://doi.org/10.1002/acn3.756.
Article CAS PubMed PubMed Central Google Scholar
Meyer BP, Hirschler L, Lee S, Kurpad SN, Warnking JM, Barbier EL, et al. Optimized cervical spinal cord perfusion MRI after traumatic injury in the rat. J Cereb Blood Flow Metab. 2021;41:2010–25. https://doi.org/10.1177/0271678x20982396.
Article PubMed PubMed Central Google Scholar
Matsubayashi K, Nagoshi N, Komaki Y, Kojima K, Shinozaki M, Tsuji O, et al. Assessing cortical plasticity after spinal cord injury by using resting-state functional magnetic resonance imaging in awake adult mice. Sci Rep. 2018;8:14406. https://doi.org/10.1038/s41598-018-32766-8.
Article CAS PubMed PubMed Central Google Scholar
Laakso H, Lehto LJ, Paasonen J, Salo R, Canna A, Lavrov I, et al. Spinal cord fMRI with MB-SWIFT for assessing epidural spinal cord stimulation in rats. Magn Reson Med. 2021;86:2137–45. https://doi.org/10.1002/mrm.28844.
Article PubMed PubMed Central Google Scholar
Wu W, He S, Wu J, Chen C, Li X, Liu K, et al. Long-term in vivo imaging of mouse spinal cord through an optically cleared intervertebral window. Nat Commun. 2022;13:1959. https://doi.org/10.1038/s41467-022-29496-x.
Article CAS PubMed PubMed Central Google Scholar
Esipova TV, Barrett MJP, Erlebach E, Masunov AE, Weber B, Vinogradov SA. Oxyphor 2P: a high-performance probe for deep-tissue longitudinal oxygen imaging. Cell Metab. 2019;29:736–e447. https://doi.org/10.1016/j.cmet.2018.12.022.
Article CAS PubMed PubMed Central Google Scholar
Mondal R, Campoy A-DT, Liang C, Mukherjee J. [18F]FDG PET/CT studies in transgenic hualpha-syn (A53T) Parkinson’s Disease Mouse Model of α-Synucleinopathy. Front NeuroSci. 2021;15:718.
Harmon JN, Chandran P, Chandrasekaran A, Hyde JE, Hernandez GJ, Reed MJ, et al. Contrast-enhanced ultrasound imaging detects anatomical and functional changes in rat cervical spine microvasculature with normal aging. bioRxiv. 2024. https://doi.org/10.1101/2024.03.12.584672.
Article PubMed PubMed Central Google Scholar
Claron J, Hingot V, Rivals I, Rahal L, Couture O, Deffieux T, et al. Large-scale functional ultrasound imaging of the spinal cord reveals in-depth spatiotemporal responses of spinal nociceptive circuits in both normal and inflammatory states. Pain. 2021;162:1047–59. https://doi.org/10.1097/j.pain.0000000000002078.
Comments (0)