Krap, T., Busscher, L., Oostra, R. J., Aalders, M. C. G., & Duijst, W. (2021). Phosphorescence of thermally altered human bone. International Journal of Legal Medicine, 135(3), 1025–1034. https://doi.org/10.1007/s00414-020-02455-1
Lambrecht, G., & Mallol, C. (2020). Autofluorescence of experimentally heated bone: Potential archaeological applications and relevance for estimating degree of burning. Journal of Archaeological Science: Reports, 31, 102333. https://doi.org/10.1016/j.jasrep.2020.102333
Schariatmadary, P., Aalders, M. C. G., Oostra, R. J., & Krap, T. (2023). Temperature-specific spectral shift of luminescing thermally altered human remains. International Journal of Legal Medicine, 137(4), 1277–1286. https://doi.org/10.1007/s00414-023-03006-0
Article PubMed PubMed Central Google Scholar
Williams, R. M., & Schut, E. (Directors). (2023). Long-lived Green Photo-luminescence of Heat Treated Human Bones: The Glow of Cremated Remains. YouTube. https://youtu.be/1sHryuvY_Fk
Bachman, C. H., & Ellis, E. H. (1965). Fluorescence of Bone. Nature, 206(4991), 1328–1331. https://doi.org/10.1038/2061328a0
Article PubMed CAS Google Scholar
Breunig, H. G., & König, K. (2022). High-resolution phosphorescence lifetime imaging (PLIM) of bones. Applied Sciences (Switzerland). https://doi.org/10.3390/app12031066
Gallant, A. S. (2013). Alternate light sources in the detection of bone after an accelerated fire: A pilot study. Journal of Forensic Sciences. https://doi.org/10.1111/j.1556-4029.2012.02272.x
Scheirs, S., Malgosa, A., & Galtés, I. (2015). The use of ultraviolet light to reveal and enhance burned areas on human bone. Forensic Science, Medicine, and Pathology, 11(4), 618–621. https://doi.org/10.1007/s12024-015-9710-8
Mckinnon, M., Henneberg, M., & Higgins, D. (2021). A review of the current understanding of burned bone as a source of DNA for human identification. Science and Justice, 61(4), 332–338. https://doi.org/10.1016/j.scijus.2021.03.006
Barreiro, M. B., Ferreira, M. T., Makhoul, C., & Morgado, M. (2022). Distinguishing thermally altered bones from debris using imaging and fluorescence spectrometry. Journal of Forensic and Legal Medicine, 91, 1–7. https://doi.org/10.1016/j.jflm.2022.102416
Lee, W., & Khoo, B. (2010). Forensic light sources for detection of biological evidences in crime scene investigation: A review. Malaysian Journal of Forensic Sciences, 1(1), 17–27.
Krap, T., Nota, K., Wilk, L. S., van de Goot, F. R. W., Ruijter, J. M., Duijst, W., & Oostra, R. J. (2017). Luminescence of thermally altered human skeletal remains. International Journal of Legal Medicine, 131(4), 1165–1177. https://doi.org/10.1007/s00414-017-1546-1
Article PubMed PubMed Central Google Scholar
Richards, N. F. (1977). Fire investigation—destruction of corpses. Medicine, Science and the Law, 17(2), 79–82. https://doi.org/10.1177/002580247701700202
Article PubMed CAS Google Scholar
Rosa, J., Marques, M. P. M., Gonçalves, D., & Ferreira, M. T. (2023). Half a century of systematic research on heat-induced colour changes in bone—A review. Science & Justice, 63(5), 573–580. https://doi.org/10.1016/j.scijus.2023.07.002
Krap, T., Van De Goot, F. R. W., Oostra, R.-J., Duijst, W., & Waters-Rist, A. L. (2017). Temperature estimations of heated bone: A questionnaire-based study of accuracy and precision of interpretation of bone colour by forensic and physical anthropologists. Legal Medicine, 29, 22–28. https://doi.org/10.1016/j.legalmed.2017.08.001
Krap, T., Ruijter, J. M., Nota, K., Karel, J., Burgers, A. L., Aalders, M. C. G., Oostra, R. J., & Duijst, W. (2019). Colourimetric analysis of thermally altered human bone samples. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-45420-8
Morgan, E. F., & Gerstenfeld, L. C. (2013). The bone organ system: Form and function. Marcus and Feldman’s Osteoporosis. https://doi.org/10.1016/B978-0-12-813073-5.00002-2
Tomoaia, G., & Pasca, R. D. (2015). On the collagen mineralization A review. Clujul Medical, 88(1), 15–22. https://doi.org/10.15386/cjmed-359
Article PubMed PubMed Central Google Scholar
Farbod, K., Nejadnik, M. R., Jansen, J. A., & Leeuwenburgh, S. C. G. (2014). Interactions between inorganic and organic phases in bone tissue as a source of inspiration for design of novel nanocomposites. Tissue Engineering - Part B: Reviews, 20(2), 173–188. https://doi.org/10.1089/ten.teb.2013.0221
Article PubMed CAS Google Scholar
Olszta, M. J., Cheng, X., Jee, S. S., Kumar, R., Kim, Y. Y., Kaufman, M. J., Douglas, E. P., & Gower, L. B. (2007). Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports, 58(3–5), 77–116. https://doi.org/10.1016/j.mser.2007.05.001
Fratzl, P., Fratzl-Zelman, N., Klaushofer, K., Vogl, G., & Koller, K. (1991). Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcified Tissue International, 48(6), 407–413. https://doi.org/10.1007/BF02556454
Article PubMed CAS Google Scholar
Shehata, T. P., & Krap, T. (2024). An overview of the heat-induced changes of the chemical composition of bone from fresh to calcined. International Journal of Legal Medicine, 138(3), 1039–1053. https://doi.org/10.1007/s00414-024-03160-z
Article PubMed PubMed Central Google Scholar
Brodsky, B., & Persikov, A. V. (2005). Molecular structure of the collagen triple helix. Advances in Protein Chemistry, 70(04), 301–339. https://doi.org/10.1016/S0065-3233(05)70009-7
Article PubMed CAS Google Scholar
Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual Review of Biochemistry, 78, 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
Article PubMed PubMed Central CAS Google Scholar
National Center for Biotechnology Information. (n.d.). PubChem Identifier: CID 21252274, Gly-Pro-Hyp. https://pubchem.ncbi.nlm.nih.gov/compound/Gly-Pro-Hyp#section=2D-Structure
Buehler, M. J. (2006). Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12285–12290. https://doi.org/10.1073/pnas.0603216103
Article PubMed PubMed Central CAS Google Scholar
Qin, Z., Gautieri, A., Nair, A. K., Inbar, H., & Buehler, M. J. (2012). Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface. Langmuir, 28(4), 1982–1992. https://doi.org/10.1021/la204052a
Article PubMed CAS Google Scholar
Indurkar, A., Choudhary, R., Rubenis, K., & Locs, J. (2023). Role of carboxylic organic molecules in interfibrillar collagen mineralization. Frontiers in Bioengineering and Biotechnology, 11, 1–13. https://doi.org/10.3389/fbioe.2023.1150037
Lozano, L. F., Peña-Rico, M. A., Heredia, A., Ocotlán-Flores, J., Gómez-Cortés, A., Velázquez, R., Belío, I. A., & Bucio, L. (2003). Thermal analysis study of human bone. Journal of Materials Science, 38(23), 4777–4782. https://doi.org/10.1023/A:1027483220584
Fields, M., Spencer, N., Dudhia, J., & McMillan, P. F. (2017). Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy. Biopolymers, 107(6), 1–8. https://doi.org/10.1002/bip.23017
Trȩbacz, H., & Wójtowicz, K. (2005). Thermal stabilization of collagen molecules in bone tissue. International Journal of Biological Macromolecules, 37(5), 257–262. https://doi.org/10.1016/j.ijbiomac.2005.04.007
Article PubMed CAS Google Scholar
Etok, S. E., Valsami-Jones, E., Wess, T. J., Hiller, J. C., Maxwell, C. A., Rogers, K. D., Manning, D. A. C., White, M. L., Lopez-Capel, E., Collins, M. J., Buckley, M., Penkman, K. E. H., & Woodgate, S. L. (2007). Structural and chemical changes of thermally treated bone apatite. Journal of Materials Science, 42(23), 9807–9816. https://doi.org/10.1007/s10853-007-1993-z
Comments (0)