Differential Effects of Continuous Theta Burst Stimulation over the Bilateral and Unilateral Cerebellum on Working Memory

Chung SW, Rogasch NC, Hoy KE, Fitzgerald PB. The effect of single and repeated prefrontal intermittent theta burst stimulation on cortical reactivity and working memory. Brain Stimul. 2018;113:566–74. https://doi.org/10.1016/j.brs.2018.01.002.

Article  Google Scholar 

Ricker TJ, Cowan N. Differences between presentation methods in working memory procedures: a matter of working memory consolidation. J Exp Psychol Learn Mem Cogn. 2014;402:417–28. https://doi.org/10.1037/a0034301.

Article  Google Scholar 

Koch G, Bonnì S, Casula EP, Iosa M, Paolucci S, Pellicciari MC, et al. Effect of cerebellar stimulation on Gait and Balance Recovery in patients with Hemiparetic Stroke: a Randomized Clinical Trial. JAMA Neurol. 2019;762:170–8. https://doi.org/10.1001/jamaneurol.2018.3639.

Matsugi A, Cerebellar TMS. Induces motor responses mediating modulation of spinal excitability: a Literature Review. Brain Sci. 2023. https://doi.org/10.3390/brainsci13040531.

Article  PubMed  PubMed Central  Google Scholar 

Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;131:151–77. https://doi.org/10.1007/s12311-013-0511-x.

Maurer CW, LaFaver K, Ameli R, Epstein SA, Hallett M, Horovitz SG. Impaired self-agency in functional movement disorders: a resting-state fMRI study. Neurology. 2016;876:564–70. https://doi.org/10.1212/wnl.0000000000002940.

Article  Google Scholar 

Takahashi M, Iwamoto K, Fukatsu H, Naganawa S, Iidaka T, Ozaki N. White matter microstructure of the cingulum and cerebellar peduncle is related to sustained attention and working memory: a diffusion tensor imaging study. Neurosci Lett. 2010;4772:72–6. https://doi.org/10.1016/j.neulet.2010.04.031.

Article  CAS  Google Scholar 

Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;442:489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039.

Article  Google Scholar 

Sheu YS, Desmond JE. Cerebro-Cerebellar response to sequence violation in a Cognitive Task: an fMRI study. Cerebellum. 2022;211:73–85. https://doi.org/10.1007/s12311-021-01279-y.

Article  Google Scholar 

Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;212:174–87. https://doi.org/10.1038/s41593-017-0054-4.

Article  CAS  Google Scholar 

Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;52:84–94. https://doi.org/10.1016/j.brs.2012.03.006.

Article  Google Scholar 

Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;209:1687–97. https://doi.org/10.1162/jocn.2008.20112.

Tomlinson SP, Davis NJ, Morgan HM, Bracewell RM. Cerebellar contributions to spatial memory. Neurosci Lett. 2014;578:182. https://doi.org/10.1016/j.neulet.2014.06.057.

Desmond JE, Chen SH, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;584:553–60. https://doi.org/10.1002/ana.20604.

Peterburs J, Blevins LC, Sheu YS, Desmond JE. Cerebellar contributions to sequence prediction in verbal working memory. Brain Struct Funct. 2019;2241:485–99. https://doi.org/10.1007/s00429-018-1784-0.

Viñas-Guasch N, Ng THB, Heng JG, Chan YC, Chew E, Desmond JE, et al. Cerebellar transcranial magnetic stimulation (TMS) impairs visual Working Memory. Cerebellum. 2023;223:332–47. https://doi.org/10.1007/s12311-022-01396-2.

E KH, Chen SH, Ho MH, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;352:593–615. https://doi.org/10.1002/hbm.22194.

Ng HB, Kao KL, Chan YC, Chew E, Chuang KH, Chen SH. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory. Behav Brain Res. 2016;305:164–73. https://doi.org/10.1016/j.bbr.2016.02.027.

Jonides J, Lewis RL, Nee DE, Lustig CA, Berman MG, Moore KS. The mind and brain of short-term memory. Annu Rev Psychol. 2008;59:193–224. https://doi.org/10.1146/annurev.psych.59.103006.093615.

Tamnes CK, Fjell AM, Østby Y, Westlye LT, Due-Tønnessen P, Bjørnerud A, et al. The brain dynamics of intellectual development: waxing and waning white and gray matter. Neuropsychologia. 2011;4913:3605–11. https://doi.org/10.1016/j.neuropsychologia.2011.09.012.

Baddeley A. Working memory: theories, models, and controversies. Annu Rev Psychol. 2012;63:1–29. https://doi.org/10.1146/annurev-psych-120710-100422.

Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;85:393–402. https://doi.org/10.1038/nrn2113.

Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;251:46–59. https://doi.org/10.1002/hbm.20131.

Pinto N, Duarte M, Gonçalves H, Silva R, Gama J, Pato MV. Bilateral theta-burst magnetic stimulation influence on event-related brain potentials. PLoS ONE. 2018;131:e0190693. https://doi.org/10.1371/journal.pone.0190693.

Rastogi A, Cash R, Dunlop K, Vesia M, Kucyi A, Ghahremani A, et al. Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation. NeuroImage. 2017;158:48–57. https://doi.org/10.1016/j.neuroimage.2017.06.048.

Gutiérrez-Muto AM, Castilla J, Freire M, Oliviero A, Tornero J. Theta burst stimulation: technical aspects about TMS devices. Brain Stimul. 2020;133:562–4. https://doi.org/10.1016/j.brs.2020.01.002.

Article  Google Scholar 

Gatti D, Rinaldi L, Cristea I, Vecchi T. Probing cerebellar involvement in cognition through a meta-analysis of TMS evidence. Sci Rep. 2021;111:14777. https://doi.org/10.1038/s41598-021-94051-5.

Article  CAS  Google Scholar 

Liao L-Y, Xie Y-J, Chen Y, Gao Q. Cerebellar Theta-Burst Stimulation Combined with Physiotherapy in Subacute and Chronic Stroke patients: a pilot randomized controlled trial. Neurorehabilit Neural Repair. 2020;351:23–32. https://doi.org/10.1177/1545968320971735.

Article  Google Scholar 

Huang YZ, Rothwell JC. The effect of short-duration bursts of high-frequency, low-intensity transcranial magnetic stimulation on the human motor cortex. Clin Neurophysiol. 2004;1155:1069–75. https://doi.org/10.1016/j.clinph.2003.12.026.

Article  Google Scholar 

Nee DE, Brown JW, Askren MK, Berman MG, Demiralp E, Krawitz A, et al. A meta-analysis of executive components of working memory. Cereb Cortex. 2013;232:264–82. https://doi.org/10.1093/cercor/bhs007.

Article  Google Scholar 

Etherton JL, Bianchini KJ, Ciota MA, Heinly MT, Greve KW. Pain, malingering and the WAIS-III Working Memory Index. Spine J. 2006;61:61–71. https://doi.org/10.1016/j.spinee.2005.05.382.

Article  Google Scholar 

Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;203:271. https://doi.org/10.1007/s11065-010-9137-7.

Article  Google Scholar 

Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;112:352–65. https://doi.org/10.1007/s12311-011-0260-7.

Durisko C, Fiez JA. Functional activation in the cerebellum during working memory and simple speech tasks. Cortex. 2010;467:896–906. https://doi.org/10.1016/j.cortex.2009.09.009.

Thürling M, Hautzel H, Küper M, Stefanescu MR, Maderwald S, Ladd ME, et al. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: a 7 T fMRI study. NeuroImage. 2012;623:1537–50. https://doi.org/10.1016/j.neuroimage.2012.05.037.

Küper M, Kaschani P, Thürling M, Stefanescu MR, Burciu RG, Göricke S, et al. Cerebellar fMRI activation increases with increasing Working Memory demands. Cerebellum. 2016;153:322–35. https://doi.org/10.1007/s12311-015-0703-7.

Bernard JA, Seidler RD. Moving forward: age effects on the cerebellum underlie cognitive and motor declines. Neurosci Biobehav Rev. 2014;42:193–207. https://doi.org/10.1016/j.neubiorev.2014.02.011.

Wessel MJ, Park CH, Beanato E, Cuttaz EA, Timmermann JE, Schulz R, et al. Multifocal stimulation of the cerebro-cerebellar loop during the acquisition of a novel motor skill. Sci Rep. 2021;111:1756. https://doi.org/10.1038/s41598-021-81154-2.

Article  CAS  Google Scholar 

Di Lorenzo F, Bonnì S, Picazio S, Motta C, Caltagirone C, Martorana A, et al. Effects of Cerebellar Theta Burst Stimulation on Contralateral Motor Cortex Excitability in patients with Alzheimer’s Disease. Brain Topogr. 2020;335:613–7. https://doi.org/10.1007/s10548-020-00781-6.

Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;1724:9675–85. https://doi.org/10.1523/jneurosci.17-24-09675.1997.

Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 2013;64:649–53. https://doi.org/10.1016/j.brs.2012.10.001.

Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ. Improving fluid intelligence with training on working memory. Proc Natl Acad Sci U S A. 2008;10519:6829–33. https://doi.org/10.1073/pnas.0801268105.

Baddeley AD. The phonological loop and the irrelevant speech effect: some comments on Neath (2000). Psychon Bull Rev. 2000;73:544–9. https://doi.org/10.3758/bf03214369.

Kirschen MP, Chen SH, Schraedley-Desmond P, Desmond JE. Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. NeuroImage. 2005;242:462–72. https://doi.org/10.1016/j.neuroimage.2004.08.036.

Peterburs J, Cheng DT, Desmond JE. The Association between Eye movements and cerebellar activation in a verbal Working Memory Task. Cereb Cortex. 2016;269:3802–13. https://doi.org/10.1093/cercor/bhv187.

Adam M, Berlijn DMH, Stefan J, Groiss A, Schnitzler M, Mittelstaedt C, Bellebaum D, Timmann M, Minnerop J. Peterburs. The effect of cerebellar TMS on error processing: A combined single-pulse TMS and ERP study. Imaging Neuroscience 2024;2:1–19.https://doi.org/10.1162/imag_a_00080

Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;584:208–13. https://doi.org/10.1016/j.rehab.2015.05.005.

Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;33:161. https://doi.org/10.1016/j.brs.2009.10.001.

Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden CD. Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol. 1991;441:57–72. https://doi.org/10.1113/jphysiol.1991.sp018738.

Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;376:703–13. https://doi.org/10.1002/ana.410370603.

Article  Google Scholar 

Pinto AD, Chen R. Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res. 2001;1404:505–10. https://doi.org/10.1007/s002210100862.

Article  Google Scholar 

Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557Pt 2:689–700. https://doi.org/10.1113/jphysiol.2003.059808.

Article  CAS  Google Scholar 

Pope PA. Modulating cognition using transcranial direct current stimulation of the cerebellum. J Vis Exp 201596https://doi.org/10.3791/52302

Wischnewski M, Schutter DJ. Efficacy and Time Course of Theta Burst Stimulation in healthy humans. Brain Stimul. 2015;84:685–92. https://doi.org/10.1016/j.brs.2015.03.004.

Chung SW, Hill AT, Rogasch NC, Hoy KE, Fitzgerald PB. Use of theta-burst stimulation in changing excitability of motor cortex: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2016;63:43–64. https://doi.org/10.1016/j.neubiorev.2016.01.008.

McCalley DM, Lench DH, Doolittle JD, Imperatore JP, Hoffman M, Hanlon CA. Determining the optimal pulse number for theta burst induced change in cortical excitability. Sci Rep. 2021;111:8726. https://doi.org/10.1038/s41598-021-87916-2.

Brownjohn PW, Reynolds JN, Matheson N, Fox J, Shemmell JB. The effects of individualized theta burst stimulation on the excitability of the human motor system. Brain Stimul. 2014;72:260–8. https://doi.org/10.1016/j.brs.2013.12.007.

Farzan F, Wu Y, Manor B, Anastasio EM, Lough M, Novak V, et al. Cerebellar TMS in treatment of a patient with cerebellar ataxia: evidence from clinical, biomechanics and neurophysiological assessments. Cerebellum. 2013;125:707–12. https://doi.org/10.1007/s12311-013-0485-8.

Strzalkowski NDJ, Chau AD, Gan LS, Kiss ZHT. Both 50 and 30 hz continuous theta burst transcranial magnetic stimulation depresses the cerebellum. Cerebellum. 2019;182:157–65. https://doi.org/10.1007/s12311-018-0971-0.

Hamada M, Strigaro G, Murase N, Sadnicka A, Galea JM, Edwards MJ, et al. Cerebellar modulation of human associative plasticity. J Physiol. 2012;59010:2365–74. https://doi.org/10.1113/jphysiol.2012.230540.

Comments (0)

No login
gif