The AI-driven Drug Design (AIDD) platform: an interactive multi-parameter optimization system integrating molecular evolution with physiologically based pharmacokinetic simulations

Bohacek R, Mcmartin C, Glunz P, Rich DH (1999) Growmol, a de novo computer program, and its application to thermolysin and pepsin: results of the design and synthesis of a novel inhibitor. In: Truhlar DG, Howe WJ, Hopfinger AJ, Blaney J, Dammkoehler RA (eds) Rational drug design. The IMA volumes in mathematics and its applications. Springer, New York, pp 103–114. https://doi.org/10.1007/978-1-4612-1480-9_9

Chapter  Google Scholar 

Eisen MB, Wiley DC, Karplus M, Hubbard RE (1994) HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19(3):199–221. https://doi.org/10.1002/prot.340190305

Article  CAS  PubMed  Google Scholar 

Moon JB, Howe WJ (1991) Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins Struct Funct Bioinform 11(4):314–328. https://doi.org/10.1002/prot.340110409

Article  CAS  Google Scholar 

Gillet V, Johnson AP, Mata P, Sike S, Williams P (1993) SPROUT: a program for structure generation. J Comput Aided Mol Des 7(2):127–153. https://doi.org/10.1007/BF00126441

Article  ADS  CAS  PubMed  Google Scholar 

Böhm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6(1):61–78. https://doi.org/10.1007/BF00124387

Article  ADS  PubMed  Google Scholar 

Besnard J et al (2012) Automated design of ligands to polypharmacological profiles. Nature 492(7428):7428. https://doi.org/10.1038/nature11691

Article  CAS  Google Scholar 

Martín-Bautista MJ, Vila M-A (1998) Applying genetic algorithms to the feature selection problem in information retrieval. In: Andreasen T, Christiansen H, Larsen HL (eds) Flexible query answering systems. Lecture notes in computer science. Springer, Berlin, pp 272–281. https://doi.org/10.1007/BFb0056008

Chapter  Google Scholar 

Hartenfeller M, Proschak E, Schüller A, Schneider G (2008) Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization. Chem Biol Drug Des 72(1):16–26. https://doi.org/10.1111/j.1747-0285.2008.00672.x

Article  CAS  PubMed  Google Scholar 

Wang R, Gao Y, Lai L (2000) LigBuilder: a multi-purpose program for structure-based drug design. Mol Model Annu 6(7):498–516. https://doi.org/10.1007/s0089400060498

Article  CAS  Google Scholar 

Sun Y, Ewing TJA, Skillman AG, Kuntz ID (1998) CombiDOCK: Structure-based combinatorial docking and library design. J Comput Aided Mol Des 12(6):597–604. https://doi.org/10.1023/A:1008036704754

Article  ADS  CAS  PubMed  Google Scholar 

Fechner U, Schneider G (2006) Flux (1): a virtual synthesis scheme for fragment-based de novo design. J Chem Inf Model 46(2):699–707. https://doi.org/10.1021/ci0503560

Article  CAS  PubMed  Google Scholar 

Fechner U, Schneider G (2007) Flux (2): comparison of molecular mutation and crossover operators for ligand-based de novo design. J Chem Inf Model 47(2):656–667. https://doi.org/10.1021/ci6005307

Article  CAS  PubMed  Google Scholar 

Brown N, McKay B, Gilardoni F, Gasteiger J (2004) A graph-based genetic algorithm and its application to the multiobjective evolution of median molecules. J Chem Inf Comput Sci 44(3):1079–1087. https://doi.org/10.1021/ci034290p

Article  CAS  PubMed  Google Scholar 

Wang M et al (2022) Deep learning approaches for de novo drug design: an overview. Curr Opin Struct Biol 72:135–144. https://doi.org/10.1016/j.sbi.2021.10.001

Article  CAS  PubMed  Google Scholar 

Bai Q et al (2022) Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. WIREs Comput Mol Sci 12(3):e1581. https://doi.org/10.1002/wcms.1581

Article  CAS  Google Scholar 

Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol: benchmarking models for de novo molecular design. J Chem Inf Model 59(3):1096–1108. https://doi.org/10.1021/acs.jcim.8b00839

Article  CAS  PubMed  Google Scholar 

Bush JT et al (2020) A turing test for molecular generators. J Med Chem 63(20):11964–11971. https://doi.org/10.1021/acs.jmedchem.0c01148

Article  CAS  PubMed  Google Scholar 

Phillips MA et al (2016) A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with improved drug-like properties for treatment and prevention of malaria. ACS Infect Dis 2(12):945–957. https://doi.org/10.1021/acsinfecdis.6b00144

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phillips MA et al (2008) Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. J Med Chem 51(12):3649–3653. https://doi.org/10.1021/jm8001026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gujjar R et al (2009) Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J Med Chem 52(7):1864–1872. https://doi.org/10.1021/jm801343r

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gujjar R et al (2011) Lead optimization of aryl and aralkyl amine-based triazolopyrimidine inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity in mice. J Med Chem 54(11):3935–3949. https://doi.org/10.1021/jm200265b

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng X et al (2009) Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds. J Biol Chem 284(39):26999–27009. https://doi.org/10.1074/jbc.M109.028589

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng X et al (2014) Fluorine modulates species selectivity in the triazolopyrimidine class of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors. J Med Chem 57(12):5381–5394. https://doi.org/10.1021/jm500481t

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coteron JM et al (2011) Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem 54(15):5540–5561. https://doi.org/10.1021/jm200592f

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marwaha A et al (2012) Bioisosteric transformations and permutations in the triazolopyrimidine scaffold to identify the minimum pharmacophore required for inhibitory activity against Plasmodium falciparum dihydroorotate dehydrogenase. J Med Chem 55(17):7425–7436. https://doi.org/10.1021/jm300351w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kokkonda S et al (2016) Tetrahydro-2-naphthyl and 2-Indanyl triazolopyrimidines targeting Plasmodium falciparum dihydroorotate dehydrogenase display potent and selective antimalarial activity. J Med Chem 59(11):5416–5431. https://doi.org/10.1021/acs.jmedchem.6b00275

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burlingham BT, Widlanski TS (2003) An intuitive look at the relationship of Ki and IC50: a more general use for the dixon plot. J Chem Educ 80(2):214. https://doi.org/10.1021/ed080p214

Article  CAS  Google Scholar 

Clark RD et al (2020) Design and tests of prospective property predictions for novel antimalarial 2-aminopropylaminoquinolones. J Comput Aided Mol Des 34(11):1117–1132. https://doi.org/10.1007/s10822-020-00333-x

Article 

Comments (0)

No login
gif