Reactivities of acrylamide warheads toward cysteine targets: a QM/ML approach to covalent inhibitor design

Smith AJT, Zhang X, Leach AG, Houk KN (2008) Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J Med Chem 52(2):225–233. https://doi.org/10.1021/jm800498e

Article  CAS  Google Scholar 

Yu HS, Gao C, Lupyan D, Wu Y, Kimura T, Wu C et al (2019) Toward atomistic modeling of irreversible covalent inhibitor binding kinetics. J Chem Inf Model 59(9):3955–3967. https://doi.org/10.1021/acs.jcim.9b00268

Article  CAS  PubMed  Google Scholar 

Luo YL (2021) Mechanism-based and computational-driven covalent drug design. J Chem Inf Model 61(11):5307–5311. https://doi.org/10.1021/acs.jcim.1c01278

Article  CAS  PubMed  Google Scholar 

Potashman MH, Duggan ME (2009) Covalent modifiers: an orthogonal approach to drug design. J Med Chem 52(5):1231–1246. https://doi.org/10.1021/jm8008597

Article  CAS  PubMed  Google Scholar 

Singh J, Petter RC, Baillie TA, Whitty A (2011) The resurgence of covalent drugs. Nat Rev Drug Discov 10(4):307–317. https://doi.org/10.1038/nrd3410

Article  CAS  PubMed  Google Scholar 

Mah R, Thomas JR, Shafer CM (2014) Drug discovery considerations in the development of covalent inhibitors. Bioorg Med Chem Lett 24(1):33–39. https://doi.org/10.1016/j.bmcl.2013.10.003

Article  CAS  PubMed  Google Scholar 

Cesco SD, Kurian J, Dufresne C, Mittermaier AK, Moitessier N (2017) Covalent inhibitors design and discovery. Eur J Med Chem 138:96–114. https://doi.org/10.1016/j.ejmech.2017.06.019

Article  CAS  PubMed  Google Scholar 

Mukherjee H, Grimster NP (2018) Beyond cysteine: recent developments in the area of targeted covalent inhibition. Curr Opin Chem Biol 44:30–38. https://doi.org/10.1016/j.cbpa.2018.05.011

Article  CAS  PubMed  Google Scholar 

Lonsdale R, Ward RA (2018) Structure-based design of targeted covalent inhibitors. Chem Soc Rev 47(11):3816–3830. https://doi.org/10.1039/c7cs00220c

Article  CAS  PubMed  Google Scholar 

Péczka N, Orgován Z, Ábrányi-Balogh P, Keserű GM (2022) Electrophilic warheads in covalent drug discovery: an overview. Expert Opin Drug Discov 17(4):413–422. https://doi.org/10.1080/17460441.2022.2034783

Article  CAS  PubMed  Google Scholar 

Baillie TA (2020) Approaches to mitigate the risk of serious adverse reactions in covalent drug design. Expert Opin Drug Discov 16(3):275–287. https://doi.org/10.1080/17460441.2021.1832079

Article  CAS  PubMed  Google Scholar 

Ábrányi-Balogh P, Petri L, Imre T, Szijj P, Scarpino A, Hrast M et al (2018) A road map for prioritizing warheads for cysteine targeting covalent inhibitors. Eur J Med Chem 160:94–107. https://doi.org/10.1016/j.ejmech.2018.10.010

Article  CAS  PubMed  Google Scholar 

Gehringer M, Laufer SA (2019) Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J Med Chem 62(12):5673–5724. https://doi.org/10.1021/acs.jmedchem.8b01153

Article  CAS  PubMed  Google Scholar 

Bianco G, Goodsell DS, Forli S (2020) Selective and effective: current progress in computational structure-based drug discovery of targeted covalent inhibitors. Trends Pharmacol Sci 41(12):1038–1049. https://doi.org/10.1016/j.tips.2020.10.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gehringer M (2020) Covalent inhibitors: back on track? Future Med Chem 12(15):1363–1368. https://doi.org/10.4155/fmc-2020-0118

Article  CAS  PubMed  Google Scholar 

Boike L, Henning NJ, Nomura DK (2022) Advances in covalent drug discovery. Nat Rev Drug Discov 21(12):881–898. https://doi.org/10.1038/s41573-022-00542-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishnan S, Miller RM, Tian B, Mullins RD, Jacobson MP, Taunton J (2014) Design of reversible, cysteine-targeted Michael acceptors guided by kinetic and computational analysis. J Am Chem Soc 136(36):12624–12630. https://doi.org/10.1021/ja505194w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birkholz A, Kopecky DJ, Volak LP, Bartberger MD, Chen Y, Tegley CM et al (2020) Systematic study of the glutathione reactivity of N-phenylacrylamides: 2. Effects of acrylamide substitution. J Med Chem 63(20):11602–11614. https://doi.org/10.1021/acs.jmedchem.0c00749

Article  CAS  PubMed  Google Scholar 

Awoonor-Williams E, Kennedy J, Rowley CN (2021) Measuring and predicting warhead and residue reactivity. The Design of Covalent-Based Inhibitors. Elsevier, New York, pp 203–227

Chapter  Google Scholar 

Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17(8):1232–1239. https://doi.org/10.1093/oxfordjournals.molbev.a026406

Article  CAS  PubMed  Google Scholar 

Zhang Y, Zhang D, Tian H, Jiao Y, Shi Z, Ran T et al (2016) Identification of covalent binding sites targeting cysteines based on computational approaches. Mol Pharm 13(9):3106–3118. https://doi.org/10.1021/acs.molpharmaceut.6b00302

Article  CAS  PubMed  Google Scholar 

Awoonor-Williams E, Rowley CN (2018) How reactive are druggable cysteines in protein kinases? J Chem Inf Model 58(9):1935–1946. https://doi.org/10.1021/acs.jcim.8b00454

Article  CAS  PubMed  Google Scholar 

Schwöbel JAH, Wondrousch D, Koleva YK, Madden JC, Cronin MTD, Schüürmann G (2010) Prediction of Michael-type acceptor reactivity toward glutathione. Chem Res Toxicol 23(10):1576–1585. https://doi.org/10.1021/tx100172x

Article  CAS  PubMed  Google Scholar 

Capoferri L, Lodola A, Rivara S, Mor M (2015) Quantum mechanics/molecular mechanics modeling of covalent addition between EGFR–cysteine 797 and N-(4-anilinoquinazolin-6-yl) acrylamide. J Chem Inf Model 55(3):589–599. https://doi.org/10.1021/ci500720e

Article  CAS  PubMed  Google Scholar 

Awoonor-Williams E, Rowley CN (2021) Modeling the binding and conformational energetics of a targeted covalent inhibitor to Bruton’s tyrosine kinase. J Chem Inf Model 61(10):5234–5242. https://doi.org/10.1021/acs.jcim.1c00897

Article  CAS  PubMed  Google Scholar 

Watt SKI, Charlebois JG, Rowley CN, Keillor JW (2022) A mechanistic study of thiol addition to N-phenylacrylamide. Org Biomol Chem 20(45):8898–8906. https://doi.org/10.1039/d2ob01369j

Article  CAS  PubMed  Google Scholar 

Watt SKI, Charlebois JG, Rowley CN, Keillor JW (2023) A mechanistic study of thiol addition to N-acryloylpiperidine. Org Biomol Chem 21(10):2204–2212. https://doi.org/10.1039/d2ob02223k

Article  CAS  PubMed  Google Scholar 

Keeley A, Petri L, Ábrányi-Balogh P, Keserű GM (2020) Covalent fragment libraries in drug discovery. Drug Discov Today 25(6):983–996. https://doi.org/10.1016/j.drudis.2020.03.016

Article  CAS  PubMed 

Comments (0)

No login
gif