Analysis of Molecular Mechanisms of Chronic Irradiation Effects on Electrical Signals in Wheat Plants

Mousseau T.A., Møller A.P. 2020. Plants in the light of ionizing radiation: What have we learned from Chernobyl, Fukushima, and other “hot” places? Front. Plant Sci. 11, 552.

Article  PubMed  PubMed Central  Google Scholar 

Wang J., Zhang Y., Zhou L., Yang F., Li J., Du Y., Liu R., Li W., Yu L. 2022. Ionizing radiation: Effective physical agents for economic crop seed priming and the underlying physiological mechanisms. Int. J. Mol. Sci. 23 (23), 15212.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duarte G.T., Volkova P.Y., Perez F., Horemans N. 2023. Chronic ionizing radiation of plants: An evolutionary factor from direct damage to non-target effects. Plants. 12 (5), 1178.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grinberg M.A., Vodeneev V.A., Il’in N.V., Mareev E.A. 2023. Laboratory simulation of photosynthesis in a wide range of electromagnetic and radiation environment parameters. Astron. Rep. 67, 71–77.

Article  Google Scholar 

Kovalchuk I., Molinier J., Yao Y., Arkhipov A., Kovalchuk O. 2007. Transcriptome analysis reveals fundamental differences in plant response to acute and chronic exposure to ionizing radiation. Mutat. Res. 624 (1–2), 101–113.

Article  CAS  PubMed  Google Scholar 

Gudkov S.V., Grinberg M.A., Sukhov V., Vodeneev V. 2019. Effect of ionizing radiation on physiological and molecular processes in plants. J. Environ. Radioact. 202, 8–24.

Article  CAS  PubMed  Google Scholar 

Volkova P., Bondarenko E., Kazakova E. 2022. Radiation hormesis in plants. Curr. Opin. Toxicol. 30, 100334.

Article  CAS  Google Scholar 

Hayashi G., Shibato J., Imanaka T., Cho K., Kubo A., Kikuchi S., Satoh K., Kimura S., Ozawa S., Fukutani S., Endo S., Ichikawa K., Agrawal G.K., Shioda S., Fukumoto M., Rakwal R. 2014. Unraveling low-level gamma radiation-responsive changes in expression of early and late genes in leaves of rice seedlings at Iitate Village, Fukushima. J. Hered. 105 (5), 723–738.

Article  CAS  PubMed  Google Scholar 

Duarte G.T., Volkova P.Y., Geras’kin S.A. 2019. The response profile to chronic radiation exposure based on the transcriptome analysis of Scots pine from Chernobyl affected zone. Environ. Pollut. 250, 618–626.

Article  CAS  PubMed  Google Scholar 

Vanhoudt N., Vandenhove H., Horemans N., Wannijn J., Hees M., Vangronsveld J., Cuypers A. 2010. The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana. J. Environ. Radioact. 101 (11), 923–930.

Article  CAS  PubMed  Google Scholar 

Alikamanoglu S., Yaycili O., Sen A. 2011. Effect of gamma radiation on growth factors, biochemical parameters, and accumulation of trace elements in soybean plants (Glycine max L. Merrill). Biol. Trace Elem. Res. 141 (1–3), 283–293.

Article  CAS  PubMed  Google Scholar 

Macovei A., Garg B., Raikwar S., Balestrazzi A., Carbonera D., Buttafava A., Tuteja N. 2014. Synergistic exposure of rice seeds to different doses of gamma-ray and salinity stress resulted in increased antioxidant enzyme activities and gene specific modulation of TC-NER pathway. Biomed. Res. Int. 2014, 676934.

Article  PubMed  PubMed Central  Google Scholar 

Deng C., Wang, T., Wu J., Xu A., Li H., Liu M., Bian P. 2017. Modulation of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana. Mutat. Res. 796, 20–28.

Article  CAS  PubMed  Google Scholar 

Grinberg M., Gudkov S., Balalaeva I., Gromova E., Sinitsyna Y., Sukhov V., Vodeneev V. 2021. Effect of chronic β-radiation on long-distance electrical signals in wheat and their role in adaptation to heat stress. Environ. Exp. Bot. 184, 104378.

Article  CAS  Google Scholar 

Zandalinas S.I., Mittler R., Balfagón D., Arbona V., Gómez-Cadenas A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 162 (1), 2–12.

Article  CAS  PubMed  Google Scholar 

Sukhov V., Sukhova E., Vodeneev V. 2019. Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. Prog. Biophys. Mol. Biol. 146, 63–84.

Article  CAS  PubMed  Google Scholar 

Johns S., Hagihara T., Toyota M., Gilroy S. 2021. The fast and the furious: Rapid long-range signaling in plants. Plant Physiol. 185 (3), 694–706.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ladeynova M., Kuznetsova D., Mudrilov M., Vodeneev V. 2023. Integration of electrical signals and phytohormones in the control of systemic response. Int. J. Mol. Sci. 24 (1), 847.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esch H., Miltenburgett H., Hug O. 1964. The influence of electrical potentials on algal cells by X-rays. Biophys. l, 380–388.

Google Scholar 

Vodeneev V., Akinchits E., Sukhov V. 2015. Variation potential in higher plants: Mechanisms of generation and propagation. Plant Signal Behav. 10 (9), e1057365.

Article  PubMed  PubMed Central  Google Scholar 

Mudrilov M.A., Ladeynova M.M., Kuznetsova D.V., Vodeneev V.A. 2023. Ion channels in electrical signaling in higher plants. Biochem. (Moscow). 88, 1467–1487.

Article  CAS  Google Scholar 

Mousavi S.A., Chauvin A., Pascaud F., Kellenberger S., Farmer E.E. 2013. Glutamate receptor-like genes mediate leaf-to-leaf wound signaling. Nature. 500 (7463), 422–426.

Article  CAS  PubMed  Google Scholar 

Mangano S., Juarez S.P., Estevez J.M. 2016. ROS regulation of polar growth in plant cells. Plant Physiol. 171 (3), 1593–1605.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Demidchik V. 2018. ROS-activated ion channels in plants: Biophysical characteristics, physiological functions, and molecular nature. Int. J. Mol. Sci. 19 (4), 1263.

Article  PubMed  PubMed Central  Google Scholar 

Meena M.K., Prajapati R., Krishna D., Divakaran K., Pandey Y., Reichelt M., Mathew M.K., Boland W., Mithöfer A., Vadasserya J. 2019. The Ca2+ channel CNGC19 regulates arabidopsis defense against spodoptera herbivory. Plant Cell. 31 (7), 153–1562.

Article  Google Scholar 

Moe-Lange J., Gappel N.M., Machado M., Wudick M.M., Sies C., Schott-Verdugo S.N., Bonus M., Mishra S., Hartwig T., Bezrutczyk M., Basu D., Farmer E.E., Gohlke H., Malkovskiy A., Haswell E.S., Lercher M.J., Ehrhardt D.W., Frommer W.B., Kleist T.J. 2021. Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. Sci. Adv. 7 (37), eabg4298.

Hedrich R. 2012. Ion channels in plants. Physiol. Rev. 92 (4), 1777–1811.

Article  CAS  PubMed  Google Scholar 

Saito S., Uozumi N. 2019. Guard cell membrane anion transport systems and their regulatory components: An elaborate mechanism controlling stress-induced stomatal closure. Plants. 8 (1), 9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuin T.A., Dreyer I., Michard E. 2018. The role of potassium channels in Arabidopsis thaliana long distance electrical signalling: AKT2 modulates tissue excitability while GORK shapes action potentials. Int. J. Mol. Sci. 19 (4), 926.

Article  PubMed  PubMed Central  Google Scholar 

Choi W.G., Miller G., Wallace I., Harper J., Mittler R., Gilroy S. 2017. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS, and electrical signals. Plant J. 90 (4), 698–707.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim D.S., Kim J.B., Goh E.I., Kim W.I., Kim S.H., Seob Y.W., Jang C.S., Kang S.Y. 2011. Antioxidant response of Arabidopsis plants to gamma irradiation: Genome-wide expression profiling of the ROS scavenging and signal transduction pathways. J. Plant Physiol. 168 (16), 1960–1971.

Article  CAS  PubMed 

Comments (0)

No login
gif