Itou T., Collins L.V., Thoren F.B., Dahlgren C., Karlsson A. 2006. Changes in activation states of murine polymorphonuclear leukocytes (PMN) during inflammation: A comparison of bone marrow and peritoneal exudate PMN. Clin. Vaccine Immunol. 13, 575–583. https://doi.org/10.1128/CVI.13.5.575-583.2006
Article CAS PubMed PubMed Central Google Scholar
Liew P.X., Kubes P. 2019. The neutrophil’s role during health and disease. Physiol. Rev. 99, 1223–1248. https://doi.org/10.1152/physrev.00012.2018
Article CAS PubMed Google Scholar
Rosales C. 2020. Neutrophils at the crossroads of innate and adaptive immunity. J. Leukoc. Biol. 108, 377–396. https://doi.org/10.1002/JLB.4MIR0220-574RR
Article CAS PubMed Google Scholar
Nauseef W.M., Borregaard N. 2014. Neutrophils at work. Nat. Immunol. 15, 602–611. https://doi.org/10.1038/ni.2921
Article CAS PubMed Google Scholar
Hajishengallis G., Moutsopoulos N.M., Hajishengallis E., Chavakis T. 2016. Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin. Immunol. 28, 146–158. https://doi.org/10.1016/j.smim.2016.02.002
Article CAS PubMed PubMed Central Google Scholar
Tan S.-Y., Weninger W. 2017. Neutrophil migration in inflammation: intercellular signal relay and crosstalk. Current Opinion Immunol. 44, 34–42. https://doi.org/10.1016/j.coi.2016.11.002
Richardson I.M., Calo C.J., Hind L.E. 2021. Microphysiological systems for studying cellular crosstalk during the neutrophil response to infection. Front. Immunol. 27, 12:661537. https://doi.org/10.3389/fimmu.2021.661537
Root R.K. 1990. Leukocyte adhesion proteins: Their role in neutrophil function. Trans Am. Clin. Climatol. Assoc. 101, 207–224.
CAS PubMed PubMed Central Google Scholar
Kolaczkowska E., Kubes P. 2013. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175. https://doi.org/10.1038/nri3399
Article CAS PubMed Google Scholar
Nourshargh S., Alon R. 2014. Leukocyte migration into inflamed tissues. Immunity. 41, 694–707. https://doi.org/10.1016/j.immuni.2014.10.008
Article CAS PubMed Google Scholar
Filippi M.-D. 2019. Neutrophil transendothelial migration: Updates and new perspectives. Blood. 133, 2149–2158. https://doi.org/10.1182/blood-2018-12-844605
Article CAS PubMed PubMed Central Google Scholar
Bouti P., Webbers S.D.S., Fagerholm S.C., Alon R., Moser M., Matlung H.L., Kuijpers T.W. 2021. b2 Integrin signaling cascade in neutrophils: More than a single function. Front. Immunol. 11, 619925. https://doi.org/10.3389/fimmu.2020.619925
Article CAS PubMed PubMed Central Google Scholar
Margraf A., Lowell C.A., Zarbock A. 2022. Neutrophils in acute inflammation: Current concepts and translational implications. Blood. 139, 2130–2144. https://doi.org/10.1182/blood.2021012295
Article CAS PubMed Google Scholar
Ley K., Laudanna C., Cybulsky M.I., Nourshargh S. 2007. Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689. https://doi.org/10.1038/nri2156
Article CAS PubMed Google Scholar
Futosi K., Fodor S., Mócsai A. 2013. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int. Immunopharmacol. 17, 638–650. https://doi.org/10.1016/j.intimp.2013.06.034
Article CAS PubMed PubMed Central Google Scholar
Qiu D., Zhang L., Zhan J., Yang Q., Xiong H., Hu W., Ji Q., Huang J. 2020. Hyperglycemia decreases epithelial cell proliferation and attenuates neutrophil activity by reducing ICAM-1 and LFA-1 expression levels. Front. Genet. 11, 616988. https://doi.org/10.3389/fgene.2020.616988
Article CAS PubMed PubMed Central Google Scholar
Conley H.E., Sheats M.K. 2023. Targeting neutrophil β2-integrins: A review of relevant resources, tools, and methods. Biomolecules. 13, 892.
Article CAS PubMed PubMed Central Google Scholar
González-Amaro R. 2011. Cell adhesion, inflammation, and therapy: Old ideas and a significant step forward. Acta Pharmacol. Sinica. 32, 1431–1432. https://doi.org/10.1038/aps.2011.154
Ren C., Tong Y.L., Li J.C., Lu Z.Q., Yao Y.M. 2017. The protective effect of alpha 7 nicotinic acetylcholine receptor activation on critical illness and its mechanism. Int. J. Biol. Sci. 13, 46–56. https://doi.org/10.7150/ijbs.16404
Article CAS PubMed PubMed Central Google Scholar
Belchamber K.B.R., Hughes M.J., Spittle D.A., Walker E.M., Sapey E. 2021. New pharmacological tools to target leukocyte trafficking in lung disease. Front. Immunol. 12, 704173. https://doi.org/10.3389/fimmu.2021.704173
Article CAS PubMed PubMed Central Google Scholar
Safronova V.G., Vulfius K.A., Astashev M.E., Tikhonova I.V., Serov D.A., Jirova E.A., Pershina E.V., Senko D.A., Zhmak M.N., Kasheverov I.E., Tsetlin V.I. 2021. α9α10 Nicotinic acetylcholine receptors regulate murine bone marrow granulocyte functions. Immunobiology. 226, 152047. https://doi.org/10.1016/j.imbio.2020.152047
Article CAS PubMed Google Scholar
Fujii T., Mashimo M., Moriwaki Y., Misawa H., Ono S., Horiguchi K., Kawashima K. 2017. Expression and function of the cholinergic system in immune cells. Front. Immunol. 8, 1085. https://doi.org/10.3389/fimmu.2017.01085
Article CAS PubMed PubMed Central Google Scholar
Herman M., Robert Tarran R. 2020. E-cigarettes, nicotine, the lung, and the brain: Multi-level cascading pathophysiology. J. Physiol. 598, 5063–5071. https://doi.org/10.1113/JP278388
Article CAS PubMed Google Scholar
Shelukhina I., Siniavin A., Kasheverov I., Ojomoko L., Tsetlin V., UtkinY. 2023. α7- and α9-containing nicotinic acetylcholine receptors in the functioning of immune system and in pain. Int. J. Mol. Sci. 24, 6524. https://doi.org/10.3390/ijms24076524
Article CAS PubMed PubMed Central Google Scholar
Slevin M., Iemma R.S., Zeinolabediny Y., Liu D., Ferris G.R., Caprio V., Phillips N., Di Napoli M., Guo B., Zeng X., Al Baradie R., Binsaleh N.K., McDowell G., Fang W.H. 2018. Acetylcholine inhibits monomeric C‑reactive protein induced inflammation, endothelial cell adhesion, and platelet aggregation; A potential therapeutic? Front. Immunol. 9, 2124. https://doi.org/10.3389/fimmu.2018.02124
Article CAS PubMed PubMed Central Google Scholar
Hamano R., Takahashi H.K., Iwagaki H., Yoshino T., Nishibori M., Tanaka N. 2006. Stimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock. 26, 358–364. https://doi.org/10.1097/01.shk.0000228168.86845.60
Article CAS PubMed Google Scholar
Sato Y., Kosuke Maruyama K., Mikami M., Sato S. 2023. Effects of nicotine and lipopolysaccharide stimulation on adhesion molecules in human gingival endothelial cells. Odontology. 111, 428–438.
Comments (0)