Leong I.U.S., Skinner J.R., Shelling A.N., Love D.R. 2010. Identification and expression analysis of kcnh2 genes in the zebrafish. Biochem. Biophys. Res. Commun. 396 (4), 817–824.
Article CAS PubMed Google Scholar
Genge C.E., Lin E., Lee L., Sheng X., Rayani K., Gunawan M., Stevens C.M., Li A.Y., Talab S.S., Claydon T.W., Hove-Madsen L., Tibbits G.F. 2016. The zebrafish heart as a model of mammalian cardiac function. Rev. Physiol. Biochem. Pharmacol. 171, 99–136.
Article CAS PubMed Google Scholar
Derangeon M., Montnach J., Baró I., Charpentier F. 2012. Mouse models of SCN5A-related cardiac arrhythmias. Front. Physiol. 3, 210.
Article CAS PubMed PubMed Central Google Scholar
Nerbonne J.M., Nichols C.G., Schwarz T.L., Escande D. 2002. Genetic manipulation of cardiac K+ channel function in mice: What have we learned, and where do we go from here? Circ. Res. 89 (11), 944–956.
Kaese S., Verheule S. 2012. Cardiac electrophysiology in mice: A matter of size. Front. Physiol. 3, 345.
Article PubMed PubMed Central Google Scholar
Mittelstadt S.W., Hemenway C.L., Craig M.P., Hove J.R. 2008. Evaluation of zebrafish embryos as a model for assessing inhibition of hERG. J. Pharmacol. Toxicol. Methods. 57 (2), 100–105.
Article CAS PubMed Google Scholar
Bakkers J. 2011. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 91 (2), 279–288.
Article CAS PubMed PubMed Central Google Scholar
Dahme T., Katus H.A., Rottbauer W. 2009. Fishing for the genetic basis of cardiovascular disease. Dis. Model Mech. 2 (1–2), 18–22.
Article CAS PubMed PubMed Central Google Scholar
Stainier D.Y., Fouquet B., Chen J.N., Warren K.S., Weinstein B.M., Meiler S.E., Mohideen M.A., Neuhauss S.C., Solnica-Krezel L., Schier A.F., Zwartkruis F., Stemple D.L., Malicki J., Driever W., Fishman M.C. 1996. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development. 123, 285–292.
Article CAS PubMed Google Scholar
Verkerk A.O., Remme C.A. 2012. Zebrafish: A novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Front. Physiol. 3, 255.
Article PubMed PubMed Central Google Scholar
Harri M.N., Talo A. 1975. Effect of season and temperature acclimation on the heart rate-temperature relationship in the isolated frog’s heart (Rana temporaria). Comp. Biochem. Physiol. A. Comp. Physiol. 52 (2), 409–412.
Article CAS PubMed Google Scholar
Chapovetsky V., Katz U. 2003. Effects of season and temperature acclimation on electrocardiogram and heart rate of toads. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 134 (1), 77–83.
Abramochkin D., Kuzmin V. 2018. Electrophysiological differences in cholinergic signaling between the hearts of summer and winter frogs (Rana temporaria). J. Comp. Physiol. B. 188 (4), 649–656.
Article CAS PubMed Google Scholar
Abramochkin D.V., Filatova T.S., Pustovit K.B., Voronina Y.A., Kuzmin V.S., Vornanen M. 2022. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 268, 111204.
Article CAS PubMed Google Scholar
Giles W.R., Shibata E.F. 1985. Voltage clamp of bull-frog cardiac pace-maker cells: A quantitative analysis of potassium currents. J. Physiol. 368, 265–292.
Article CAS PubMed PubMed Central Google Scholar
Simmons M.A., Creazzo T., Hartzell H.C. 1986. A time-dependent and voltage-sensitive K+ current in single cells from frog atrium. J. Gen. Physiol. 88 (6), 739–755.
Article CAS PubMed Google Scholar
Hume J.R., Giles W., Robinson K., Shibata E.F., Nathan R.D., Kanai K., Rasmusson R. 1986. A time- and voltage-dependent K+ current in single cardiac cells from bullfrog atrium. J. Gen. Physiol. 88 (6), 777–798.
Article CAS PubMed Google Scholar
Nemtsas P., Wettwer E., Christ T., Weidinger G., Ravens U. 2010. Adult zebrafish heart as a model for human heart? An electrophysiological study. J. Mol. Cell Cardiol. 48 (1), 161–171.
Article CAS PubMed Google Scholar
Karpushev A.V., Mikhailova V.B., Klimenko E.S., Kulikov A.N., Ivkin D.Y., Kaschina E., Okovityi S.V. 2022. SGLT2 Inhibitor empagliflozin modulates ion channels in adult zebrafish heart. Int. J. Mol Sci. 23 (17), 9559.
Article CAS PubMed PubMed Central Google Scholar
Jou C.J., Spitzer K.W., Tristani-Firouzi M. 2010. Blebbistatin effectively uncouples the excitation-contraction process in zebrafish embryonic heart. Cell Physiol. Biochem. 25 (4–5), 419–424.
Article CAS PubMed PubMed Central Google Scholar
Panáková D., Werdich A.A., Macrae C.A. 2010. Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca2+ channel. Nature. 466 (7308), 874–878.
Article PubMed PubMed Central Google Scholar
Wythe J.D., Jurynec M.J., Urness L.D., Jones C.A., Sabeh M.K., Werdich A.A., Sato M., Yost H.J., Grunwald D.J., Macrae C.A., Li D.Y. 2011. Hadp1, a newly identified pleckstrin homology domain protein, is required for cardiac contractility in zebrafish. Dis. Model Mech. 4 (5), 607–621.
Article CAS PubMed PubMed Central Google Scholar
Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B., Schilling T.F. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203 (3), 253–310.
Article CAS PubMed Google Scholar
Serluca F.C. 2008. Development of the proepicardial organ in the zebrafish. Dev. Biol. 315 (1), 18–27.
Article CAS PubMed Google Scholar
Peralta M., González-Rosa J.M., Marques I.J., Mercader N. 2014. The Epicardium in the Embryonic and Adult Zebrafish. J. Dev. Biol. 2 (2), 101–116.
Article CAS PubMed Google Scholar
Weinberger M., Simões F.C., Patient R., Sauka-Spengler T., Riley P.R. 2020. Functional Heterogeneity within the Developing Zebrafish Epicardium. Dev. Cell. 52 (5), 574–590.
Article CAS PubMed PubMed Central Google Scholar
Liu J., Bressan M., Hassel D., Huisken J., Staudt D., Kikuchi K., Poss K.D., Mikawa T., Stainier D.Y. 2010. A dual role for ErbB2 signaling in cardiac trabeculation. Development. 137 (22), 3867–3875.
Article CAS PubMed PubMed Central Google Scholar
Staudt D.W., Liu J., Thorn K.S., Stuurman N., Liebling M., Stainier D.Y. 2014. High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation. Development. 141 (3), 585–593.
Article CAS PubMed PubMed Central Google Scholar
Beis D., Bartman T., Jin S.W., Scott I.C., D’Amico L.A., Ober E.A., Verkade H., Frantsve J., Field H.A., Wehman A., Baier H., Tallafuss A., Bally-Cuif L., Chen J.N., Stainier D.Y., Jungblut B. 2005. Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development. 132 (18), 4193–4204.
Comments (0)