Electrophysiology of the Danio rerio Heart

Leong I.U.S., Skinner J.R., Shelling A.N., Love D.R. 2010. Identification and expression analysis of kcnh2 genes in the zebrafish. Biochem. Biophys. Res. Commun. 396 (4), 817–824.

Article  CAS  PubMed  Google Scholar 

Genge C.E., Lin E., Lee L., Sheng X., Rayani K., Gunawan M., Stevens C.M., Li A.Y., Talab S.S., Claydon T.W., Hove-Madsen L., Tibbits G.F. 2016. The zebrafish heart as a model of mammalian cardiac function. Rev. Physiol. Biochem. Pharmacol. 171, 99–136.

Article  CAS  PubMed  Google Scholar 

Derangeon M., Montnach J., Baró I., Charpentier F. 2012. Mouse models of SCN5A-related cardiac arrhythmias. Front. Physiol. 3, 210.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nerbonne J.M., Nichols C.G., Schwarz T.L., Escande D. 2002. Genetic manipulation of cardiac K+ channel function in mice: What have we learned, and where do we go from here? Circ. Res. 89 (11), 944–956.

Article  Google Scholar 

Kaese S., Verheule S. 2012. Cardiac electrophysiology in mice: A matter of size. Front. Physiol. 3, 345.

Article  PubMed  PubMed Central  Google Scholar 

Mittelstadt S.W., Hemenway C.L., Craig M.P., Hove J.R. 2008. Evaluation of zebrafish embryos as a model for assessing inhibition of hERG. J. Pharmacol. Toxicol. Methods. 57 (2), 100–105.

Article  CAS  PubMed  Google Scholar 

Bakkers J. 2011. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 91 (2), 279–288.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dahme T., Katus H.A., Rottbauer W. 2009. Fishing for the genetic basis of cardiovascular disease. Dis. Model Mech. 2 (1–2), 18–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stainier D.Y., Fouquet B., Chen J.N., Warren K.S., Weinstein B.M., Meiler S.E., Mohideen M.A., Neuhauss S.C., Solnica-Krezel L., Schier A.F., Zwartkruis F., Stemple D.L., Malicki J., Driever W., Fishman M.C. 1996. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development. 123, 285–292.

Article  CAS  PubMed  Google Scholar 

Verkerk A.O., Remme C.A. 2012. Zebrafish: A novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Front. Physiol. 3, 255.

Article  PubMed  PubMed Central  Google Scholar 

Harri M.N., Talo A. 1975. Effect of season and temperature acclimation on the heart rate-temperature relationship in the isolated frog’s heart (Rana temporaria). Comp. Biochem. Physiol. A. Comp. Physiol. 52 (2), 409–412.

Article  CAS  PubMed  Google Scholar 

Chapovetsky V., Katz U. 2003. Effects of season and temperature acclimation on electrocardiogram and heart rate of toads. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 134 (1), 77–83.

Article  PubMed  Google Scholar 

Abramochkin D., Kuzmin V. 2018. Electrophysiological differences in cholinergic signaling between the hearts of summer and winter frogs (Rana temporaria). J. Comp. Physiol. B. 188 (4), 649–656.

Article  CAS  PubMed  Google Scholar 

Abramochkin D.V., Filatova T.S., Pustovit K.B., Voronina Y.A., Kuzmin V.S., Vornanen M. 2022. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 268, 111204.

Article  CAS  PubMed  Google Scholar 

Giles W.R., Shibata E.F. 1985. Voltage clamp of bull-frog cardiac pace-maker cells: A quantitative analysis of potassium currents. J. Physiol. 368, 265–292.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simmons M.A., Creazzo T., Hartzell H.C. 1986. A time-dependent and voltage-sensitive K+ current in single cells from frog atrium. J. Gen. Physiol. 88 (6), 739–755.

Article  CAS  PubMed  Google Scholar 

Hume J.R., Giles W., Robinson K., Shibata E.F., Nathan R.D., Kanai K., Rasmusson R. 1986. A time- and voltage-dependent K+ current in single cardiac cells from bullfrog atrium. J. Gen. Physiol. 88 (6), 777–798.

Article  CAS  PubMed  Google Scholar 

Nemtsas P., Wettwer E., Christ T., Weidinger G., Ravens U. 2010. Adult zebrafish heart as a model for human heart? An electrophysiological study. J. Mol. Cell Cardiol. 48 (1), 161–171.

Article  CAS  PubMed  Google Scholar 

Karpushev A.V., Mikhailova V.B., Klimenko E.S., Kulikov A.N., Ivkin D.Y., Kaschina E., Okovityi S.V. 2022. SGLT2 Inhibitor empagliflozin modulates ion channels in adult zebrafish heart. Int. J. Mol Sci. 23 (17), 9559.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jou C.J., Spitzer K.W., Tristani-Firouzi M. 2010. Blebbistatin effectively uncouples the excitation-contraction process in zebrafish embryonic heart. Cell Physiol. Biochem. 25 (4–5), 419–424.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panáková D., Werdich A.A., Macrae C.A. 2010. Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca2+ channel. Nature. 466 (7308), 874–878.

Article  PubMed  PubMed Central  Google Scholar 

Wythe J.D., Jurynec M.J., Urness L.D., Jones C.A., Sabeh M.K., Werdich A.A., Sato M., Yost H.J., Grunwald D.J., Macrae C.A., Li D.Y. 2011. Hadp1, a newly identified pleckstrin homology domain protein, is required for cardiac contractility in zebrafish. Dis. Model Mech. 4 (5), 607–621.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B., Schilling T.F. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203 (3), 253–310.

Article  CAS  PubMed  Google Scholar 

Serluca F.C. 2008. Development of the proepicardial organ in the zebrafish. Dev. Biol. 315 (1), 18–27.

Article  CAS  PubMed  Google Scholar 

Peralta M., González-Rosa J.M., Marques I.J., Mercader N. 2014. The Epicardium in the Embryonic and Adult Zebrafish. J. Dev. Biol. 2 (2), 101–116.

Article  CAS  PubMed  Google Scholar 

Weinberger M., Simões F.C., Patient R., Sauka-Spengler T., Riley P.R. 2020. Functional Heterogeneity within the Developing Zebrafish Epicardium. Dev. Cell. 52 (5), 574–590.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu J., Bressan M., Hassel D., Huisken J., Staudt D., Kikuchi K., Poss K.D., Mikawa T., Stainier D.Y. 2010. A dual role for ErbB2 signaling in cardiac trabeculation. Development. 137 (22), 3867–3875.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Staudt D.W., Liu J., Thorn K.S., Stuurman N., Liebling M., Stainier D.Y. 2014. High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation. Development. 141 (3), 585–593.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beis D., Bartman T., Jin S.W., Scott I.C., D’Amico L.A., Ober E.A., Verkade H., Frantsve J., Field H.A., Wehman A., Baier H., Tallafuss A., Bally-Cuif L., Chen J.N., Stainier D.Y., Jungblut B. 2005. Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development. 132 (18), 4193–4204.

Article  CAS  PubMed 

Comments (0)

No login
gif