Variants of human DECTIN-1 rs16910526 are linked to differential reactive oxygen species production and susceptibility to tuberculosis

World Health Organization. Annual Report of Tuberculosis. 2022; 1–68. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022%

Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016. https://doi.org/10.1371/journal.pmed.1002152.

Article  PubMed  PubMed Central  Google Scholar 

Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003;16:463–96. https://doi.org/10.1128/CMR.16.3.463-496.2003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Houben ENG, Nguyen L, Pieters J. Interaction of pathogenic mycobacteria with the host immune system. Curr Opin Microbiol. 2006. https://doi.org/10.1016/j.mib.2005.12.014.

Article  PubMed  Google Scholar 

Azad AK, Sadee W, Schlesinger LS. Innate immune gene polymorphisms in tuberculosis. Infect Immun. 2012;80:3343–59. https://doi.org/10.1128/IAI.00443-12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown GD, Herre J, Williams DL, Willment JA, Marshall ASJ, Gordon S. Dectin-1 mediates the biological effects of β-glucans. J Exp Med. 2003. https://doi.org/10.1084/jem.20021890.

Article  PubMed  PubMed Central  Google Scholar 

Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 2006;6:33–43. https://doi.org/10.1038/nri1745.

Article  CAS  PubMed  Google Scholar 

Kimberg M, Brown GD. Dectin-1 and its role in antifungal immunity. Med Mycol. 2008. https://doi.org/10.1080/13693780802140907.

Article  PubMed  Google Scholar 

Saijo S, Iwakura Y. Dectin-1 and Dectin-2 in innate immunity against fungi. Int Immunol. 2011. https://doi.org/10.1093/intimm/dxr046.

Article  PubMed  Google Scholar 

Marakalala MJ, Kerrigan AM, Brown GD. Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans. Mamm Genome. 2011;22:55–65. https://doi.org/10.1007/s00335-010-9277-3.

Article  CAS  PubMed  Google Scholar 

Lee H-M, Yuk J-M, Shin D-M, Jo E-K. Dectin-1 is inducible and plays an essential role for mycobacteria-induced innate immune responses in airway epithelial cells. J Clin Immunol. 2009;29:795–805. https://doi.org/10.1007/s10875-009-9319-3.

Article  CAS  PubMed  Google Scholar 

Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med. 2003;197:1107–17. https://doi.org/10.1084/jem.20021787.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yadav M, Schorey JS. The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood. 2006. https://doi.org/10.1182/blood-2006-05-024406.

Article  PubMed  PubMed Central  Google Scholar 

Zenaro E, Donini M, Dusi S. Induction of Th1/Th17 immune response by Mycobacterium tuberculosis : role of dectin-1, mannose receptor, and DC-SIGN. J Leukoc Biol. 2009;86:1393–401. https://doi.org/10.1189/jlb.0409242.

Article  CAS  PubMed  Google Scholar 

Romero MM, Duarte A, Pastorini M, Alemán M. Role of α-glucan-induced oxygen species in dendritic cells and its impact in immune response against tuberculosis. Int J Med Microbiol. 2019. https://doi.org/10.1016/j.ijmm.2019.07.002.

Article  PubMed  Google Scholar 

Alemán M. Neutrophil apoptosis in the context of tuberculosis infection. Tuberculosis. 2015;95:359–63. https://doi.org/10.1016/j.tube.2015.03.010.

Article  CAS  PubMed  Google Scholar 

Cunha C, Di Ianni M, Bozza S, Giovannini G, Zagarella S, Zelante T, et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood. 2010;116:5394–402. https://doi.org/10.1182/blood-2010-04-279307.

Article  CAS  PubMed  Google Scholar 

Chai LYA, De Boer MGJ, Van Der Velden WJFM, Plantinga TS, Van Spriel AB, Jacobs C, et al. The Y238X stop codon polymorphism in the human b-glucan receptor dectin-1 and susceptibility to invasive aspergillosis. J Infect Dis. 2011;203:736–43. https://doi.org/10.1093/infdis/jiq102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, et al. Human Dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 2009. https://doi.org/10.1056/nejmoa0901053.

Article  PubMed  PubMed Central  Google Scholar 

Plantinga TS, Van Der Velden WJFM, Ferwerda B, Van Spriel AB, Adema G, Feuth T, et al. Early stop polymorphism in human DECTIN-1 is associated with increased candida colonization in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2009;49:724–32. https://doi.org/10.1086/604714.

Article  CAS  PubMed  Google Scholar 

Alemán M, Schierloh P, De La Barrera SS, Musella RM, Saab MA, Baldini M, et al. Mycobacterium tuberculosis triggers apoptosis in peripheral neutrophils involving Toll-like receptor 2 and p38 mitogen protein kinase in tuberculosis patients. Infect Immun. 2004;72:5150–8. https://doi.org/10.1128/IAI.72.9.5150-5158.2004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alemán M, Beigier-Bompadre M, Borghetti C, De La Barrera S, Abbate E, Isturiz M, et al. Activation of peripheral blood neutrophils from patients with active advanced tuberculosis. Clin Immunol. 2001;100:87–95. https://doi.org/10.1006/clim.2001.5044.

Article  PubMed  Google Scholar 

Kasahara Y, Iwai K, Yachie A, Ohta K, Konno A, Seki H, et al. Involvement of reactive oxygen intermediates in spontaneous and CD95 (Fas/APO-1)-mediated apoptosis of neutrophils. Blood. 1997;89(5):1748–53.

Article  CAS  PubMed  Google Scholar 

Yadav M, Schorey JS. The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood. 2006;108:3168–75. https://doi.org/10.1182/blood-2006-05-024406.Supported.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romero MM, Basile JI, López B, Ritacco V, Barrera L, Sasiain MC, et al. Outbreaks of Mycobacterium tuberculosis MDR strains differentially induce neutrophil respiratory burst involving lipid rafts, p38 MAPK and Syk. BMC Infect Dis. 2014. https://doi.org/10.1186/1471-2334-14-262.

Article  PubMed  PubMed Central  Google Scholar 

Underhill DM, Goodridge HS. The many faces of ITAMs. Trends Immunol. 2007. https://doi.org/10.1016/j.it.2006.12.004.

Article  PubMed  Google Scholar 

van de Veerdonk FL, Teirlinck AC, Kleinnijenhuis J, Kullberg BJ, van Crevel R, van der Meer JWM, et al. Mycobacterium tuberculosis induces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1. J Leukoc Biol. 2010. https://doi.org/10.1189/jlb.0809550.

Article  PubMed  Google Scholar 

Romero MM, Balboa L, Basile JI, López B, Ritacco V, de la Barrera SS, et al. Clinical Isolates of mycobacterium tuberculosis differ in their ability to induce respiratory burst and apoptosis in neutrophils as a possible mechanism of immune escape. Clin Dev Immunol. 2012;2012: 152546. https://doi.org/10.1155/2012/152546.

Article  PubMed  PubMed Central  Google Scholar 

Yokobori N, López B, Ritacco V. The host-pathogen-environment triad: Lessons learned through the study of the multidrug-resistant mycobacterium tuberculosis M strain. Tuberculosis. 2022.

Comments (0)

No login
gif