Corkey, B. E. & Deeney, J. T. The redox communication network as a regulator of metabolism. Front. Physiol. 11, 567796 (2020).
Article PubMed PubMed Central Google Scholar
Hopp, A. K. & Hottiger, M. O. Uncovering the invisible: mono-ADP-ribosylation moved into the spotlight. Cells 10, 680 (2021).
Article CAS PubMed PubMed Central Google Scholar
Hottiger, M. O. et al. Progress in the function and regulation of ADP-ribosylation. Sci. Signal. 4, mr5 (2011).
Luscher, B. et al. ADP-ribosyltransferases, an update on function and nomenclature. FEBS J. 289, 7399–7410 (2022).
Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).
Article CAS PubMed Google Scholar
Horenstein, A. L. et al. The circular life of human CD38: from basic science to clinics and back. Molecules 25, 4844–4859 (2020).
Article CAS PubMed PubMed Central Google Scholar
Gasparrini, M., Sorci, L. & Raffaelli, N. Enzymology of extracellular NAD metabolism. Cell. Mol. Life Sci. 78, 3317–3331 (2021).
Article CAS PubMed PubMed Central Google Scholar
Waller, T. J. & Collins, C. A. Multifaceted roles of SARM1 in axon degeneration and signaling. Front. Cell Neurosci. 16, 958900 (2022).
Article CAS PubMed PubMed Central Google Scholar
Wolfram-Schauerte, M. & Hofer, K. NAD-capped RNAs — a redox cofactor meets RNA. Trends Biochem. Sci. 48, 142–155 (2023).
Article CAS PubMed Google Scholar
Ziegler, M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur. J. Biochem. 267, 1550–1564 (2000).
Article CAS PubMed Google Scholar
Nam, T. S. et al. Interleukin-8 drives CD38 to form NAADP from NADP+ and NAAD in the endolysosomes to mobilize Ca2+ and effect cell migration. FASEB J. 34, 12565–12576 (2020).
Article CAS PubMed Google Scholar
Guse, A. H. Enzymology of Ca2+-mobilizing second messengers derived from NAD: from NAD glycohydrolases to (dual) NADPH oxidases. Cells 12, 675 (2023).
Article CAS PubMed PubMed Central Google Scholar
Aarhus, R., Graeff, R. M., Dickey, D. M., Walseth, T. F. & Lee, H. C. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J. Biol. Chem. 270, 30327–30333 (1995).
Article CAS PubMed Google Scholar
Feuz, M. B., Meyer-Ficca, M. L. & Meyer, R. G. Beyond pellagra — research models and strategies addressing the enduring clinical relevance of NAD deficiency in aging and disease. Cells 12, 500 (2023).
Article CAS PubMed PubMed Central Google Scholar
McReynolds, M. R., Chellappa, K. & Baur, J. A. Age-related NAD+ decline. Exp. Gerontol. 134, 110888 (2020).
Article CAS PubMed PubMed Central Google Scholar
Breton, M. et al. Blood NAD levels are reduced in very old patients hospitalized for heart failure. Exp. Gerontol. 139, 111051 (2020).
Pirinen, E. et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 32, 144 (2020).
Article CAS PubMed Google Scholar
Horton, J. L. et al. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight 2, e84897 (2016).
Paulionis, L., Kane, S. L. & Meckling, K. A. Vitamin status and cognitive function in a long-term care population. BMC Geriatr. 5, 16 (2005).
Article PubMed PubMed Central Google Scholar
Fang, E. F. et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157, 882–896 (2014).
Article CAS PubMed PubMed Central Google Scholar
Fang, E. F. Mitophagy and NAD+ inhibit Alzheimer disease. Autophagy 15, 1112–1114 (2019).
Article CAS PubMed PubMed Central Google Scholar
Bhasin, S., Seals, D., Migaud, M., Musi, N. & Baur, J. A. Nicotinamide adenine dinucleotide in aging biology: potential applications and many unknowns. Endocr. Rev. 44, 1047–1073 (2023).
Kulkarni, C. A. & Brookes, P. S. Cellular compartmentation and the redox/nonredox functions of NAD. Antioxid. Redox Signal. 31, 623–642 (2019).
Article CAS PubMed PubMed Central Google Scholar
Murata, M. M. et al. NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol. Biol. Cell 30, 2584–2597 (2019).
Article CAS PubMed PubMed Central Google Scholar
Lautrup, S., Sinclair, D. A., Mattson, M. P. & Fang, E. F. NAD+ in brain aging and neurodegenerative disorders. Cell Metab. 30, 630–655 (2019).
Article CAS PubMed PubMed Central Google Scholar
Yoshino, J., Baur, J. A. & Imai, S. I. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 27, 513–528 (2018).
Article CAS PubMed Google Scholar
Williams, A. C., Hill, L. J. & Ramsden, D. B. Nicotinamide, NAD(P)(H), and methyl-group homeostasis evolved and became a determinant of ageing diseases: hypotheses and lessons from pellagra. Curr. Gerontol. Geriatr. Res. 2012, 302875 (2012).
Article PubMed PubMed Central Google Scholar
Bogan, K. L. & Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr. 28, 115–130 (2008).
Article CAS PubMed Google Scholar
Terakata, M. et al. Establishment of true niacin deficiency in quinolinic acid phosphoribosyltransferase knockout mice. J. Nutr. 142, 2148–2153 (2012).
Article CAS PubMed Google Scholar
Fukuwatari, T., Ohta, M., Kimtjra, N., Sasaki, R. & Shibata, K. Conversion ratio of tryptophan to niacin in Japanese women fed a purified diet conforming to the Japanese Dietary Reference Intakes. J. Nutr. Sci. Vitaminol. 50, 385–391 (2004).
Article CAS PubMed Google Scholar
Szot, J. O. et al. A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder. J. Clin. Invest. 134, e174824 (2024).
Comments (0)